Solar Heart Engineered to Beat for Decades

It’s often said that if something is worth doing it’s worth doing right, or maybe even worth overdoing. This is clearly a concept that [ANTALIFE] takes very seriously, as made abundantly clear by projects like the solar powered “beating” heart he made as a gift for his wife. What for most of us would have ended up being a junk bin build becomes a considerable engineering project in his hands, with a level of research and fine tuning that’s frankly staggering.

But [ANTALIFE] didn’t put this much thought into the device just for fun. He wants it to remain functional for as long as 30 years, and hopes he and the missus can still look on it fondly in their retirement years. Keeping an electronic device up and running for decades straight means you need to look carefully at each component and try to steer clear of any potential pitfalls.

The biggest one was the battery. More specifically, the fact he couldn’t use one. The lifetime of most rechargeable batteries is measured in hundreds of cycles, which for a device which will be charged by solar every day, means the battery is going to start showing its age in only 4 to 5 years. That simply wasn’t going to cut it.

[ANTALIFE] did some digging and realized that the solution was to use a supercapacitor, specifically the AVX SCMS22C255PRBA0. This is little wonder is rated for a staggering half million cycles, which in theory means that even with daily use it should still take a charge in the year 3300. In practice of course there are a lot of variables which will reduce that lifetime such as temperature fluctuations and the Earth being conquered by apes; but no matter what caveats you put on the figure it should still make 30 years without breaking a sweat.

Similar thought was given to choosing a solar cell with a suitably long lifetime, and he did plenty of testing and experimentation with his charging circuit, including some very nice graphs showing efficiency over time, to make sure it was up to snuff. Finally he walks the reader though his light-sensitive ring oscillator circuit which gives the device its pleasing “breathing” effect once the lights go down.

We’d love to bring you an update on this device in 30 years to see how close [ANTALIFE] got, but as we’re still trying to work the kinks out of the mobile version of the site we can’t make any guarantees about what the direct-brain interface version of HaD might look like. In the meantime though, you can read up on the long term battle between supercapacitors and traditional batteries.

Continue reading “Solar Heart Engineered to Beat for Decades”

Perfecting the Solar Powered Web Server

Running a server completely off solar power seems like it would be a relatively easy thing to do: throw up a couple of panels, tack on a charge controller and a beefy battery, and away you go. But the reality is somewhat different. Most of us hackers are operating on a relatively limited budget and probably don’t have access to the kind of property you need to put out big panels; both pretty crippling limitations. Doing solar on a small-scale is hard, and unless you really plan ahead your setup will probably be knocked out on its first cloudy day.

So when [Kris de Decker] wanted to create a solar-powered version of his site “Low-tech Magazine”, he went all in. Every element of the site and the hardware it runs on was investigated for potential power savings, and luckily for us, the entire process was written up in meticulous detail (non-solar version here). The server still does go down from time to time if the weather is particularly poor, but in general it maintains about 90% uptime in Barcelona, Spain.

The solar side of the equation is fairly simple. There’s a 50 watt photovoltaic panel charging a 12V 7Ah lead-acid battery though a 20A charge controller. With an average of 4 to 6 hours of sunlight a day, the panel generates 300 Wh of electricity in the best case scenario; which needs to be split between charging the battery and running the server itself.

As for the server, [Kris] chose the Olimex Olinuxino A20 Lime 2 in part because of it being open source hardware, but also because it’s very energy-efficient and includes a AXP209 power management chip. Depending on processor load, the Olimex board draws between 1 and 2.5 watts of power, which combined with charging losses and such means the system can run through two days of cloudy weather before giving up the ghost. A second battery might be added in the future to help improve the run time during low-light conditions, but for now its been working pretty well.

Perhaps the most interesting part of the whole project are the lengths to which the website itself was optimized to keep resource utilization as low as possible. Images are compressed using dithering to greatly reduce their file sizes, and the site eschews modern design in favor of a much less processor intensive static layout. There’s even a battery capacity display integrated into the page through some clever use of CSS. Even if you aren’t looking to set up your own sun worshiping website, there are tips here for building efficient web pages that could absolutely be put to use in other projects.

If you’re interested in solar projects, we’ve got you covered. From an open source charge controller to building DIY photovoltaic panels, there’s plenty of prior art you should find very…illuminating. Please clap.

High Efficiency, Open-Sourced MPPT Solar Charger

A few years ago, [Lukas Fässler] needed a solar charge controller and made his own, which he has been improving ever since. The design is now mature, and the High Efficiency MPPT Solar Charger is full of features like data logging, boasts a 97% efficiency over a range of 1 to 75 Watts, and can be used as a standalone unit or incorporated as a module into other systems. One thing that became clear to [Lukas] during the process was that a highly efficient, feature-rich, open-sourced hardware solution for charge controllers just didn’t exist, at least not with the features he had in mind.

Data logging and high efficiency are important for a charge controller, because batteries vary in their characteristics as they recharge and the power generated from things like solar panels varies under different conditions and loads. An MPPT (Maximum Point Power Tracking) charger is a smart unit optimized to handle all these changing conditions for maximum efficiency. We went into some detail on MPPT in the past, and after three years in development creating a modular and configurable design, [Lukas] hopes no one will have to re-invent the wheel when it comes to charge controllers.

Solar Powered Camper is a Magic Bus Indeed

There’s no doubt that Volkswagen’s offerings in the 1960s and early 1970s were the hippie cars of choice, with the most desirable models being from the Type 2 line, better known as the Microbus. And what could be even hippier than
converting a 1973 VW Microbus into a solar-electric camper?

For [Brett Belan] and his wife [Kira], their electric vehicle is about quality time with the family. And they’ll have plenty of time, given that it doesn’t exactly ooze performance like a Tesla. Then again, a Tesla would have a hard time toting the enormous 1.2 kW PV panel on its roof like this camper can, and would look even sillier with the panel jacked up to maximize its solar aspect. [Brett] uses the space created by the angled array to create extra sleeping space like the Westfalia, a pop-top VW camper. The PV array charges a bank of twelve lead-acid golf cart batteries which power an AC motor through a 500-amp controller. Interior amenities include a kitchenette, dining table, and seating that cost as much as the van before conversion. There’s no word on interior heat, but honestly, that never was VW’s strong suit — we speak from bitter, frostbitten experience here.

As for being practical transportation, that just depends on your definition of practical. Everything about this build says “labor of love,” and it’s hard to fault that. It’s also hard to fault [Brett]’s choice of platform; after all, vintage VWs are the most hackable of cars.

Continue reading “Solar Powered Camper is a Magic Bus Indeed”

Portable Battery Bank Only Looks Like a Bomb

If one of the design goals of [wsw4jr]’s portable solar battery bank build was to make something that the local bomb squad would not hesitate to detonate with a water cannon if he leaves it unattended, then mission accomplished.

We kid, but really, the whole thing has a sort of “Spy vs. Spy” vibe that belies its simple purpose. A battery bank is just an array of batteries, some kind of charge controller, and an inverter. The batteries are charged by any means possible – in this case by a small array of solar panels. The mains output of the inverter is used to power whatever doodads you have.

[wsw4jr] didn’t mention of the inverter specs, but from the size of the batteries and the wiring – both of which he admits are not yet up to snuff in his prototype – it’s a safe guess that the intended loads are pretty small.  Tipping the scale at 60 pounds, the unit tends toward the luggable end of the portability scale. Still, this could be a great tool for working out in the field, or maybe even tailgating.

We’ve seen expedient battery banks and emergency power from cordless drill batteries before, but this build is quite a bit more sophisticated. We’ll be watching for updates on this one.

Tour de Force Battery Hacking

Lithium-Ion batteries are finicky little beasts. They can’t be overcharged, overdischarged, overheated, or even looked at funny without bursting into flames. Inside any laptop battery pack, a battery charge controller keeps watch over all the little cells, and prevents them from getting damaged.

Of course, any “smart” device will sometimes make the wrong choices, and then it’s up to us to dig inside its brains and fix it. When [Viktor] got a perfectly good battery pack with a controller that refused to charge the batteries, he started off on what would become an epic journey into battery controllers, and the result is not just a fixed battery, but a controller-reprogramming tool, software, and three reversed controller chips so far.

devbBattery controller chips speak SMBus, and [Viktor] started out by building a USB-SMBus tool. It’s a clever use of a cheap eBay development board for a Cypress CY7C68013A USB microcontroller. Flashed with [Viktor]’s firmware and running his software on the host computer, a SMBus scan is child’s play.

The rest of the story is good old-fashioned hacking: looking for datasheets, reading industry powerpoints, taking wild guesses, googling for passwords, and toggling the no-connect pins while booting the controllers up. We’re not going to argue with results: the bq8030, R2J240, and M37512 controllers have all given up their secrets, and tools to program them have been integrated into [Viktor]’s SMBusb tool.

In short, this is one of the nicest hard-core hacks we’ve seen in a while. Kudos [Viktor]! And thanks for the SMBus tool.

Quick Network Bridge Gets Off-grid Home Back Online

Off-grid living isn’t for everyone, but it has gotten easier in recent years. Cheap solar panels and wind turbines let you generate your own power, and there are plenty of strategies to deal with fuel, water and sanitation. But the one thing many folks find hard to do without – high-speed internet access – has few options for the really remote homestead. [tlankford01] wants to fix that and is working on an open-source mesh network to provide high-speed internet access to off-grid communities.

But first he had to deal with a major problem. With high-speed access provided by a Clearwire wireless network, streaming content to his two flat-screen TVs wasn’t a problem. At least until Sprint bought Clearwire and shut down the service in early November. Another ISP covered his area, but his house lies in a depression out of line of sight of their tower. So he rigged up a bridge between the WiMAX network and his lab. The bridge sits on a hill in sight of the ISP’s tower 3.5 miles away. Solar panels, a charge controller and deep-cycle batteries power everything, and a wireless link down the hill rounds out the build.

This is obviously a temporary solution, and probably wouldn’t last long in winter weather. But it’s working for now, and more importantly it’s acting as proof of concept for a larger mesh system [tlankford01] has in mind. There are plenty of details on what that would look like on his project page (linked above), and it’s worth a look too if you’re interested in off-grid connectivity.