This Machine Has Lost Its Marbles

The astonishing variety of ways to tell the time which have appeared on these pages over the years provides a showcase of the talents and ingenuity of our community. Many clocks use designs we are familiar with, but every now and then along comes a clock that rings something new. So it is with [Ivan Miranda]’s latest work — a digital clock that shows the time with a dot matrix made of marbles. So far he’s published only part one of what will become a series. There’s technically no clock yet, but as it stands it’s enough of a marble machine to be a worthy project in its own right.

In the video below we see him solving the problems of creating free-running marble transport and handling via a conveyor belt, and solving such unexpected problems as cleanly releasing them from the belt, holding a row of marbles with a solenoid, and catching errant marbles that bounce free of the machine. The result is a rather pretty marble machine that makes an endless cascade of falling marbles on a curved track. We’re guessing that future videos will deal with the assembly of lines for the dot matrix display, such that the figures of the clock will be formed from black and white marbles, so this is a series to watch out for.

We’ve seen [Ivan]’s work in the past, not least for his giant 3D printer.

Continue reading “This Machine Has Lost Its Marbles”

This Kinetic Art Display Uses A Gin Bottle

[David McDaid] likes gin. So in homage to their favourite tipple, a certain brand of Scottish origin, a kinetic art project was brewed. Tabled as a Rube Goldberg machine — it’s not — but it is a very smart marble run type installation, dripping with 3D printed parts and a sprinkling of blinkenlights.

The write-up shows the degree of pain we go through with building such contraptions, apparently [David] burned through 2.5 kg of PLA filament despite the bill of materials requiring a mere 660 g. Much experimentation, trial and error, and plenty of print-and-reprint-until-good-enough, resulted in a clean looking run with some neat features. We particularly like the use of a stainless steel jigger to add a touch of metallic ting, to the soundscape produced. The whole show was put together in Fusion 360, since all those tight tolerances do not make for a simple construction without a lot of fiddling around with the layout. Once it was a sound, layout was prototyped on a wood board, which was subsequently used a drill template for the final acrylic version.

On the electronics side of things, an Arduino Nano clone is on control duty, reading an IR trip sensor to fire of a simple light effect, illuminating the gin bottle in a slick fashion. These machines need a mechanism to raise the balls against that pesky force of gravity, in this instance a 3D printed custom chain was constructed, driven with a stepper motor in turn driven from a TMC2208. You see, this thing lives in the kitchen, so the aim was to keep all the noise from the mechanics to a minimum so only the noise of LDPE balls rattling around can be heard. They are the star of the show after all! The build looks nice and would certainly be something we’d like to see on the wall. Obviously we’ve seen a few marble runs over the years. Here’s an interesting one that uses an elevator mechanism, and another project that shows how to generate runs procedurally.

Continue reading “This Kinetic Art Display Uses A Gin Bottle”

Gumball Coaster Is 3D-Printed Candy Fun

Marble runs are fun enough on their own, but what if you could eat the marbles? Gumballs are the satisfying answer to that question. To that end, [Adrian Seeley] whipped up a system for producing gumball runs programmatically for entertainment and candy dispensing purposes.

Track descriptions can be coded via basic instructions outlining a marble run, by typing out the order of straights, turns, and ramps that make up the course. Once created as a JSON file, the track description is processed via Javascript to create a tiled physical representation of the track via OpenSCAD, including all necessary support structures. The pieces can then be 3D printed to create an actual physical gumball run that can be easily assembled.

[Adrian] created a small tabletop “gumcoaster” as a prototype. Even at that size, it took 11 hours to assemble. It served as a trial run ahead of a larger version he hopes to build for a candy store display. We’ve seen some great marble runs before too, including those created via procedural generation. Video after the break.

Continue reading “Gumball Coaster Is 3D-Printed Candy Fun”

A 3D Printed Marble Run Features Neat Elevator Linkage

There’s seldom anything as joyful and relaxing to watch as a simple marble run. Of course, the thing about letting marbles fall under gravity is that you eventually need to lift them back up again. The Marblevator has a mechanism that does just that.

Overall, the build features a relatively simple marble run. It consists of just six 3D printed ramps which the marble tumbles down in just a few seconds. However, the real magic is in the mechanism that restores the marbles from the bottom of the run all the way back to the top.

A motor turns a gear, which then rotates a crank leading to a multi-link rhombus. On one corner of the rhombus is a small protrusion with a magnet attached, which picks up the marbles from the bottom of the run. As the mechanism turns, the rhombus shifts and brings the marble-carrying arm to the top of the marble run. There, it’s grabbed by another magnet, which holds the marble for a moment before letting it drop back down through the run.

It’s a simple project that nonetheless would make a brilliant desk toy. It’s also a great way to learn about linkage analysis and designing such systems on your own. If you’re big into marble runs, you might also consider procedurally generating them. Video after the break.

Continue reading “A 3D Printed Marble Run Features Neat Elevator Linkage”

Sisyphean Ball Race Robot Toils Gracefully, Magnetically

Aren’t ball races and marble runs fun? Wouldn’t they be so much more enjoyable if you didn’t have to climb back up the ladder each time, as it were, and reset the thing? [Johannes] wrote in to tell us about a wee robot with the Sisyphean task of setting a ball bearing on a simple but fun course, collecting it from the end, and airlifting it back to the start of the track.

[Johannes] built this ‘bot to test small-scale resin printing strength as well as the longevity of some tiny linear actuators from Ali that may or may not be available at a moment’s notice. The point was to see how these little guys fared when connected directly to an Arduino or other microcontroller, rather than going the safer route with a motor driver of some kind.

Some things worked well, like the c-clips that keep the axles together, and using quick pulses to release the magnetically-linked ball from the gripper. Other aspects didn’t work out so well. Tiny resin parts do not respond well to force, for starters. And then there’s the actuators themselves. The connections are fragile and the motors are weak, but they vary wildly in quality from piece to piece, so YMMV. Some lose steps, and others occasionally seize. But you wouldn’t know any of that from the graceful movement capture in the video below. Although it appears to be automated, the bot is under remote control because of the motor issues.

Not into ball runs? There are other Sisyphean tasks available, such as moving sand around in the name of meditation.

Continue reading “Sisyphean Ball Race Robot Toils Gracefully, Magnetically”

Procedurally Generating Marble Runs

Marble runs are somehow incredibly soothing to play with and watch, with the gentle clack of the marbles and the smooth, predictable motion. Sadly for some, they never quite got enough time to enjoy them in school. Luckily, [Fernando Jerez] is here with a way to procedurally generate marble runs you can actually play with!

[Fernando] does a great job of explaining the mathematical process of generating the marble runs, using the method of random space filling curves. A maze is drawn on a grid, with points on the grid acting as walls. Each grid cell is then given a value based on points on its corners, and these values then translate into directions of travel. This creates a path through the maze. Scaling this path along the Z-axis, and then replacing the path with a marble track creates the run. It’s then a simple matter of adding a shaft to the loop with a screw to drive marbles back to the top of the run, and you’re all set!

With both animated explanations and actual 3D printed marble runs, [Fernando] demonstrates the concept well. We’d love to print a few runs of our own, and we can’t help but think there’s other great applications for the mathematics behind this concept. If you’re wise to it, drop it in the comments. Otherwise, check out these exquisite creations we’ve featured before!

Exquisite Craftsmanship Elevate Vic’s Creations Above The Rest

This booth was easy to miss at Maker Faire Bay Area 2019 amidst tall professional conference signage erected by adjacent exhibitors. It showcased the work of [Dr. Victor Chaney] who enjoys his day job as a dentist and thus feels no desire to commercialize his inventions — he’s building fun projects for the sake of personal enjoyment which he simply calls Vic’s Creations. Each project is built to his own standards, which are evidently quite high judging by the perfect glossy finish on every custom wood enclosure.

Some of these creations were aligned with his musical interests. The Backpacking Banjo was built around a (well cleaned) cat food can to satisfy the desire for a lightweight instrument he can take camping. His Musical Laser Rainbow Machine (fully documented in Nuts & Volts) was created so little bands formed by independent artists like himself can have a visual light show to go with their live performances. The Music Kaleidoscope is another execution along similar lines, with an LED array whose colors are dictated by music. Venturing outside the world of music, we see a magnetically levitated Castle In The Clouds which also receives power wirelessly to illuminate LEDs

The largest and most complex work on display is an epic electromechanical masterpiece. Par One is a rolling ball sculpture featuring the most convoluted golf course ever. Several more rolling ball sculptures (also called marble machines or marble runs) are on display at Dr. Chaney’s office which must make it the coolest dentist’s lobby ever. The lifelike motions he was able to get from the automatons he built into the sculpture are breathtaking, as you can see below.

Continue reading “Exquisite Craftsmanship Elevate Vic’s Creations Above The Rest”