Self-balancing Transport Is Arduino-controlled

[Nick Thatcher] has built several iterations of a homebrew Segway, and the latest version is very impressive. When developing the project he figured there was just no way the thing would ever work, which led to its name, the No-way.

After the break you can catch a video of [Nick’s] test-ride. Looks like the two-wheeler is ready for daily use. You can just make out a red kill-switch on the right side of the polycarbonate body. This lets you disconnect the power if things get out of hand, or just when you’re done riding it. But there is also a dead-man’s switch which we believe uses two sensors where your feet go on the enclosure’s top surface. The handle has some indicator lights built into it, as well as buttons under each thumb which are used for steering. Control circuitry includes an Arduino UNO which reads a gyroscope/accelerometer sensor board from SparkFun. Two 7.2 Ah batteries provide 24V for the pair of electric scooter motors that turn the wheel-barrow wheels.

We love looking at these Segway clone project. So if you’re working on one of your own don’t forget to document your progress!

Continue reading “Self-balancing Transport Is Arduino-controlled”

Self-balancing Unicycle Only For Those With Good Balance

The only problem with this self-balancing unicycle is it’s inability to balance itself. You see, it automatically balances along the axis that is parallel to the line of travel. But since there’s only one wheel the rider is responsible for balancing perpendicular to travel. This is really not too much different from a bicycle; balancing while in motion is pretty simple. Only when you slow down or stop are you in trouble.

[Stephen Boyer] built the vehicle and uses it for most of his travel around the MIT campus. It carries a pair of 12V batteries that pack enough punch to travel five miles between charges. A 5DOF board senses motion and orientation, with an ATmega328 microcontroller calculating the corrections necessary to keep the rider upright.

The demo video after the break never really gives you good look at the thing, but it’s enough to prove that it does indeed work very well. We’re also glad to see that [Stephen] is using a kill-switch while riding.

If you’re aching for more electric unicycle video check out this other project too. Continue reading “Self-balancing Unicycle Only For Those With Good Balance”

DIY Segway: Fast, Silent, And Open

This is a picture of the guts of a diy Segway project (translated). Everything fits into a tiny space under the platform upon which the rider stands. It’s tight, but makes for a sleek look when the diamond plate is covering up all of the internals.

An ATmega644 controls the vehicle. It does so by using a PID control scheme to monitor a gyroscope, driving the wheels to maintain the center of balance. Electronically, the most complicated part of the build is the motor controller. It seems to be an original design, using an ATmega48 and several other integrated circuits. It was hard for us to figure out how this was implemented, but with some intensive study of the three schematics that go into the module we’d bet you can get to the bottom of things. We certainly like the outcome, as this personal transport is whisper quiet. Take a look at the clip after the break to hear for yourself.

Note: Be careful if you’re reusing the code from the translated link at the top. Google translator also translates the variable names in the code and might break how it works due to inconsistencies in the translation.

Continue reading “DIY Segway: Fast, Silent, And Open”

DIY Segway Recycles Broken Electric Scooters

[Petter] built himself a DIY Segway out of a couple of cheap electric scooters. We’ve seen a couple of very nice Segway builds in the past like the all analog Segway, or the creepy walking version, [Petter]’s Segway build seems like it would be a useful human transport device.

The motors, chains, gears, and wheels are scavenged from a pair of electric scooters. Steering left and right is accomplished by tilting the handlebars left and right. The handlebars themselves are attached to the joint at a base that allows them to be taken on and off. We’re thinking this would be great for throwing a [Petter]’s Segway in the trunk of a car – a design feature the original Segway doesn’t have.

Continue reading “DIY Segway Recycles Broken Electric Scooters”

Watch Out Segway, Here Comes Tilto

tilto_demo

While the Segway enjoyed a few years of fame before falling off the radar, [Marcelo Fornaso] is hoping his creation has quite a bit more staying power. Inspired by the Segway’s ability to balance itself, he started thinking about how the concept could be improved. He felt that one of the Segway’s shortcomings arose out of the fact that the base platform was rigid and required the user to lean back and forth outside the device’s frame in order to turn it. He thought that this made the riding experience uncomfortable as well as risked causing the rider to fall over.

His creation, the Tilto, aims to both improve on the turning ability of the Segway while eliminating the need for handlebars. Based on a tilting mountain board design he had been tossing around for a while, the Tilto uses accelerometers and gyros to keep its balance, much like the Segway. His goal was to keep the vehicle balanced while traveling forwards and backwards, but also allowing the device to tilt from side to side without tipping over. This design keeps the rider mostly upright, allowing the user to direct the vehicle by leaning much like you would on a bicycle.

As you can see in the video below, the Tilto works pretty well, even in its prototype form.

Finally, a people mover that lets us get our gangsta lean on!

Continue reading “Watch Out Segway, Here Comes Tilto”

Retake On A Wii Remote Controlled Balancing Robot

[Tijmen Verhulsdonck] built his own version of a Wii remote-controlled balancing robot. He drew his inspiration from the SegWii, which was built by [Ara Kourchians].

The body is built using one of our preferred fabrication methods; threaded rod makes up a rail system, with three sheets of hard board serving as a mounting structure for the motors, electronics, and battery. This does away with the 9V batteries used on the original SegWii, opting for a very powerful lithium battery perched on the highest part of the assembly. It uses an Arduino as the main microcontroller. That detects roll, pitch, and tilt of the body by reading data from a Sparkfun IMU 5 board (we’re pretty sure it’s this one). Check out the videos after the break. The first demonstrates the robot balancing on its own, then a Wii remote is connected via Bluetooth and [Tijmen] drives it around the room by tilting the controller. The second video covers the components that went into the build.

This is impressive work for a 17-year-old. [Tijmen] lists his material cost at $800 but since he’s Dutch this might not be a USD currency.

Continue reading “Retake On A Wii Remote Controlled Balancing Robot”

555 Based Balancing Bot

This post on Reddit by [superangryguy] caught our attention today. He’s put together a video explaining the basics of how to build balancing robots, focusing on a 555 timer based one. He’s got two main versions, the 555 based one and another that is based off of two transistors. He says the 555 based one is much easier to build. This has all come about due to the upcoming 555 timer contest. if you go to the Reddit post you can get schematics for both versions as well as a sneak peak at what he plans on building for the contest. You can see the video after the break.

Continue reading “555 Based Balancing Bot”