Hackaday Links Column Banner

Hackaday Links: May 23, 2021

The epicenter of the Chinese electronics scene drew a lot of attention this week as a 70-story skyscraper started wobbling in exactly the way skyscrapers shouldn’t. The 1,000-ft (305-m) SEG Plaza tower in Shenzhen began its unexpected movements on Tuesday morning, causing a bit of a panic as people ran for their lives. With no earthquakes or severe weather events in the area, there’s no clear cause for the shaking, which was clearly visible from the outside of the building in some of the videos shot by brave souls on the sidewalks below. The preliminary investigation declared the building safe and blamed the shaking on a combination of wind, vibration from a subway line under the building, and a rapid change in outside temperature, all of which we’d suspect would have occurred at some point in the 21-year history of the building. Others are speculating that a Kármán vortex Street, an aerodynamic phenomenon that has been known to catastrophically impact structures before, could be to blame; this seems a bit more likely to us. Regardless, since the first ten floors of SEG Plaza are home to one of the larger electronics markets in Shenzhen, we hope this is resolved quickly and that all our friends there remain safe.

In other architectural news, perched atop Building 54 at the Massachusetts Institute of Technology campus in Cambridge for the last 55 years has been a large, fiberglass geodesic sphere, known simply as The Radome. It’s visible from all over campus, and beyond; we used to work in Kendall Square, and the golf-ball-like structure was an important landmark for navigating the complex streets of Cambridge. The Radome was originally used for experiments with weather radar, but fell out of use as the technology it helped invent moved on. That led to plans to remove the iconic structure, which consequently kicked off a “Save the Radome” campaign. The effort is being led by the students and faculty members of the MIT Radio Society, who have put the radome to good use over the years — it currently houses an amateur radio repeater, and the Radio Society uses the dish within it to conduct Earth-Moon-Earth (EME) microwave communications experiments. The students are serious — they applied for and received a $1.6-million grant from Amateur Radio Digital Communications (ARDC) to finance their efforts. The funds will be used to renovate the deteriorating structure.

Well, this looks like fun: Python on a graphing calculator. Texas Instruments has announced that their TI-84 Plus CE Python graphing calculator uses a modified version of CircuitPython. They’ve included seven modules, mostly related to math and time, but also a suite of TI-specific modules that interact with the calculator hardware. The Python version of the calculator doesn’t seem to be for sale in the US yet, although the UK site does have a few “where to buy” entries listed. It’ll be interesting to see the hacks that come from this when these are readily available.

Did you know that PCBWay, the prolific producer of cheap PCBs, also offers 3D-printing services too? We admit that we did not know that, and were therefore doubly surprised to learn that they also offer SLA resin printing. But what’s really surprising is the quality of their clear resin prints, at least the ones shown on this Twitter thread. As one commenter noted, these look more like machined acrylic than resin prints. Digging deeper into PCBWay’s offerings, which not only includes all kinds of 3D printing but CNC machining, sheet metal fabrication, and even injection molding services, it’s becoming harder and harder to justify keeping those capabilities in-house, even for the home gamer. Although with what we’ve learned about supply chain fragility over the last year, we don’t want to give up the ability to make parts locally just yet.

And finally, how well-calibrated are your fingers? If they’re just right, perhaps you can put them to use for quick and dirty RF power measurements. And this is really quick and really dirty, as well as potentially really painful. It comes by way of amateur radio operator VK3YE, who simply uses a resistive dummy load connected to a transmitter and his fingers to monitor the heat generated while keying up the radio. He times how long it takes to not be able to tolerate the pain anymore, plots that against the power used, and comes up with a rough calibration curve that lets him measure the output of an unknown signal. It’s brilliantly janky, but given some of the burns we’ve suffered accidentally while pursuing this hobby, we’d just as soon find another way to measure RF power.

How A Muslim Immigrant From Bangladesh Became America’s Master Builder

If the United States has a national architectural form, it is the skyscraper. The notion of building a tower to the heavens is as old as Genesis, but it took some brash 19th century Americans to develop that fanciful idea into tangible, profitable buildings. Although we dressed up our early skyscrapers in Old World styles (the Met Life Tower as an Italian campanile, the Woolworth Building as a French Gothic cathedral), most foreigners agreed that the skyscraper suited only our misfit nation. For decades, Americans were alone in building them. Even those European modernists who dreamed of gleaming towers along Friedrichstraße and Boulevard de Sébastopol had to cross the Atlantic for a chance to act on their ambitions. By the start of World War II, 147 of the 150 tallest habitable buildings on the planet were located in the United States. 

No building style better represented America’s industriousness, monomaniacal greed, disregard of tradition, and eagerness to attempt feats that more established cultures considered obscene. And while those indelicate traits prompted Americans to develop the skyscraper, it was our openness and multiculturalism that brought us our greatest skyscraper builder: a Bangladeshi Muslim immigrant named Fazlur Rahman Khan.

Khan was born on April 3rd, 1929 in Dhaka, Bangladesh (Dacca, British India at the time). His father, a mathematics instructor, cultivated young Fazlur’s interest in technical subjects and encouraged him to pursue a degree at Calcutta’s Bengal Engineering College. He excelled in his studies there and, after graduating, won a Fulbright Scholarship that brought him to the University of Illinois. In the United States, Khan studied structural engineering and engineering mechanics, earning two master’s degrees and a PhD in just three years. After a detour in Pakistan, Khan returned to the United States and was hired as an engineer in the Chicago office of Skidmore, Owings & Merrill (SOM), one of the most prominent architecture and engineering firms in the world.

Though he was born in a nation with no history of highrise construction, Dr. Fazlur Rahman Khan had worked his way to a position where he would revolutionize the field of structural engineering and build America’s proudest landmarks.

Continue reading “How A Muslim Immigrant From Bangladesh Became America’s Master Builder”

Turtles All The Way Down, 40 Propeller MCU Skyscraper

Why bother interconnecting 40 Propeller microcontrollers one on top of the other? For the power that comes from parallel processing of course! [Humanoido] put the setup together for a total of 1280 ports, 640 counters, and more all running at 6.4 billion instructions per second for the low low price of 300-500$ by our count. The “skyscraper” even comes complete with software and schematics, promising developers the ability to expand or adapt for any venture. Why would we need such a setup in the first place? For any of the following: vision tracking/modification, artificial intelligence, advanced robotic control, or more.

Related: [Humanoido] loves putting MCUs together, check out one of his other creations the Basic Stamp supercomputer.

[Thanks Logan996]