OpenCV Spreads Smart Camera Joy To See Ideas Come To Life

Do you have a great application for computer vision, but couldn’t spare the cost of hardware needed to build it? Or perhaps you just need a deadline to pull you away from endless doom scrolling? Either way, the OpenCV team wants you to enter their OpenCV AI Competition 2021 and they’re willing to pitch in hardware to make it happen.

This competition is part of OpenCV’s 20th anniversary celebration, and the field of machine vision has changed a lot in those two decades. OpenCV started within Intel harnessing power of their high end CPUs, but today the excitement is around specialized acceleration hardware for vision processing. Which is why OpenCV put their support and lent their name to the OpenCV AI Kit (OAK) Kickstarter we covered a few months ago. Since then, the hardware was produced and starting to arrive in project backer’s hands. (Barring pandemic-related shipping restrictions…)

This shiny new hardware is the competition’s focus. Phase one solicits team proposals for putting an OAK-D’s power to novel use. University teams may have up to ten members, general teams are limited to four. Each team’s geographic home will put them in one of six global regions. Proposals must be submitted by January 27th, 2021. By February 11th, judges will select the best twenty-five general and ten university team proposals from each region, and every member of the team gets an OAK-D unit to turn their idea into reality by phase two deadline of June 27th. That’s up to 1,200 OAK-D modules available to anyone who can convince the judges they have a great idea and they are capable of bringing it to fruition. Is that you? Of course it is!

Teams will also receive additional resources such as an allotment of cloud compute credits to train their models, and naturally all tutorials and sample code released as part of OAK Kickstarter. No explicit resource for project team organization is mentioned, but of course our own Hackaday.io is available to support you. Best of luck to everyone who enters and we look forward to seeing all the projects this contest will bring to life.

OAK Vision Modules Help You See The Forest And The Trees

OpenCV is an open source library of computer vision algorithms, its power and flexibility made many machine vision projects possible. But even with code highly optimized for maximum performance, we always wish for more. Which is why our ears perk up whenever we hear about a hardware accelerated vision module, and the latest buzz is coming out of the OpenCV AI Kit (OAK) Kickstarter campaign.

There are two vision modules launched with this campaign. The OAK-1 with a single color camera for two dimensional vision applications, and the OAK-D which adds stereo cameras for that third dimension. The onboard brain is a Movidius Myriad X processor which, according to team members who have dug through its datasheet, have been massively underutilized in other products. They believe OAK modules will help the chip fulfill its potential for vision applications, delivering high performance while consuming low power in a small form factor. Reading over the spec sheet, we think it’s fair to call these “Ultimate Myriad X Dev Boards” but we must concede “OpenCV AI Kit” sounds better. It does not provide hardware acceleration for the entire OpenCV library (likely an impossible task) but it does cover the highly demanding subset suitable for Myriad X acceleration.

Since the campaign launched a few weeks ago, some additional information have been released to help assure backers that this project has real substance. It turns out OAK is an evolution of a project we’ve covered almost exactly one year ago that became a real product DepthAI, so at least this is not their first rodeo. It is also encouraging that their invitation to the open hardware community has already borne fruit. Check out this thread discussing OAK for robot vision, where a question was met with an honest “we don’t have expertise there” from the OAK team, but then ArduCam pitched in with their camera module experience to help.

We wish them success for their planned December 2020 delivery. They have already far surpassed their funding goals, they’ve shipped hardware before, and we see a good start to a development community. We look forward to the OAK-1 and OAK-D joining the ranks of other hacking friendly vision modules like OpenMV, JeVois, StereoPi, and AIY Vision.

Front Door Camera Sends Automatic Alerts By Text

In these turbulent times, journalists fearmonger and honest citizens fear for the safety of their homes and themselves. Adding some security features can allay these fears, and with the advent of cheap technology, front door cameras have become popular. There’s a wide array of options on the market, but short of watching hours of logged video, they’re not always super useful. Adding some smarts can really help – as [Peter Quinn] has done.

For this project, [Peter] decided on a JeVois smart camera. More than just a USB webcam, it also packs a quad-core processor running machine vision algorithms. This allows object recognition and other tasks to be run on the camera itself. In this setup, [Peter] configured the JeVois camera to detect people. When a human is detected upon the doorstep, the camera sends a message to the connected Raspberry Pi over serial. The Raspberry Pi then captures a JPEG still from the camera over the USB connection, and, using Twilio, sends a notification to [Peter]’s phone.

It’s a well-integrated system that automatically photographs visitors to [Peter]’s home, requiring little to no interaction from the user. We’ve seen other integrated machine vision platforms, too – such as the OpenMV, which got its start as a Hackaday Prize entry, way back in 2017.

JeVois Machine Vision Camera Nails Demo Mode

JeVois is a small, open-source, smart machine vision camera that was funded on Kickstarter in early 2017. I backed it because cameras that embed machine vision elements are steadily growing more capable, and JeVois boasts an impressive range of features. It runs embedded Linux and can process video at high frame rates using OpenCV algorithms. It can run standalone, or as a USB camera streaming raw or pre-processed video to a host computer for further action. In either case it can communicate to (and be controlled by) other devices via serial port.

But none of that is what really struck me about the camera when I received my unit. What really stood out was the demo mode. The team behind JeVois nailed an effective demo mode for a complex device. That didn’t happen by accident, and the results are worth sharing.

Continue reading “JeVois Machine Vision Camera Nails Demo Mode”