Waveform Generator Teardown Is Nearly Empty

We always enjoy [Kerry Wong]’s insightful teardowns, and recently, he opened up a UTG1042X arbitrary waveform generator. Getting inside was a bit of a challenge since there were no visible screws. Turns out, they were under some stickers. We always dislike that because it is very difficult to get the unit to go back together.

Once open, the case reveals it is almost completely empty. The back panel has a power supply, and the front panel has all the working circuitry. The box seems to be for holding the foot and preventing the device from getting lost on your bench.

The power supply is unremarkable. There are a few odd output voltages. The main board is a bit more interesting, especially after removing the heat sink. There are two channels, but the board isn’t laid out, with a lot of segregation between the two channels. That makes sense with the output sections clustered together and the digital section with the CPU, FPGA, and the DAC in close proximity.

The other side of the board connects to a very simple display board. It would be interesting to compare this to a circa-1980s AWG, which would have been far more complicated.

Making a waveform generator with a microprocessor and a DAC isn’t hard. The hard part is the output stages and maximizing the operating speed.

Continue reading “Waveform Generator Teardown Is Nearly Empty”

Danish Vintage LRC Meter Reveals Inside

Modern test equipment is great, but there’s something about a big meter with a swinging needle and a mirror for parallax correction that makes a device look like real gear. [Thomas] shows us a Danish LCR meter (or, as it says on the front, an RLC meter). The device passes AC through the component and uses that to determine the value based on the setting of a range switch. It looks to be in great shape and passed some quick tests. Have a look at it in the video below.

An outward inspection shows few surprises, although there is an odd set of terminals on the back labeled DC bias. This allows you to provide a DC voltage in case you have a capacitor that behaves differently when the capacitor has a DC voltage across it. Continue reading “Danish Vintage LRC Meter Reveals Inside”

Tiny Signal Generator Revealed

There was a time when test equipment was big and heavy. Those days are gone, and [Kiss Analog] shows us the inside of a Uni-T UTG962E arbitrary waveform generator. The device is truly tiny. You might think this is due to the dense packing of the circuit board. However, one board is packed but the other board seems to have a high degree of integration on one IC. You can check out the video below.

The main processor is some sort of ARM — we think an STM32F-series part. The markings were hard to make out under the microscope.

Continue reading “Tiny Signal Generator Revealed”

Modern Microcontroller Boosts Classic Logic Analyzer To New Heights

[Ted Fried] recently found a beautiful HP 1600A/1607A logic analyzer set. State of the art in 1975, it looks like glorious Space Age equipment today. He decided to hook it up some modern gear to put it through its paces.

Wanting to give the equipment a proper shakedown, he enlisted a Teensy 4.1 to spit a deluge of logic at the HP unit. The microcontroller was tasked with generating 32 data signals along with two clock outputs to give the analyzer plenty to analyze. The HP 1600A handled this no problem, so [Ted] kept tinkering.

His next feat was to explore the addressable “MAP” function of the unit, which allowed writing to the 64×64 pixel display. The Teensy 4.1 was easily able to send images to the display, but [Ted] isn’t stopping there. He’s got plans to do the usual thing and get Bad Apple going on the hardware.

Getting a logic analyzer to analyze logic isn’t much of a hack, sure. But it’s instructive of how to approach working with such hardware. If you want to spit a bunch of logic out fast, a Teensy 4.1 is a great choice because it’s got a ton of IO and a ton of clock cycles to tickle it with.

We enjoyed seeing this old piece of hardware light up the phosphors once more. If you’ve got your own projects going on with classic bits of HP test gear, don’t hesitate to let us know!

ESP32 Oscilloscope Skips Screen For The Browser

An oscilloscope can be an expensive piece of equipment, but not every measurement needs four channels and gigahertz sampling rates. For plenty of home labs, old oscilloscopes with CRTs can be found on the used marketplace for a song that are still more than capable of getting the job done, but even these can be overpowered (not to mention extremely bulky). If you’re looking for something even cheaper, and quite a bit smaller, this ESP32 scope from [BojanJurca] might fit the bill.

The resulting device manages to keep costs extremely low, but not without a trade-off. For this piece of test equipment, sampling is done over the I2C bus on the ESP32, which can manage a little over 700 samples per second with support for two channels. With the ESP32 connected to a wireless network, the data it captures can be viewed from a browser in lieu of an attached screen, which also keeps the size of the device exceptionally small. While it’s not a speed demon, that’s more than fast enough to capture waveforms from plenty of devices or our own circuit prototypes in a form factor that can fit even the smallest spaces.

Of course for work on devices with faster switching times, it’s always good to keep a benchtop oscilloscope around. But as far as we can tell this one is the least expensive, smallest, and most capable we’ve come across that would work for plenty of troubleshooting or testing scenarios in a pinch. We’ve seen others based on slightly more powerful microcontrollers like this one based on the STM32 and this other built around the Wio Terminal with a SAMD51, both of which also include built-in screens.

Spectrum Analyzer Buyer’s Guide

Having a scope in a home lab used to be a real luxury, but these days, its fairly common for the home gamer to have a sophisticated storage scope (or two) hanging around. Dedicated spectrum analyzers are a bit less common, but they have also dropped in price while growing in capabilities. Want to buy your very own spectrum analyzer? [Kiss Analog] has a buyer’s guide for what to consider.

If you’ve already got a scope, it may have a Fast Fourier Transform (FFT) function, and he talks about how it could be used in place of a spectrum analyzer or vice versa. But it really depends on what you’re planning on using it for. If you’re doing compliance testing for emissions, an analyzer is invaluable. If you like building transmitters or even just oscillators for other purposes, viewing the output on a spectrum analyzer can show you how well or poorly your design is performing. Any application where you need to visualize large swaths of the RF spectrum is a candidate for a spectrum analyzer.

Towards the end of the video, you’ll get to see some actual uses on a Uni-T UTS3021B. While those are at the higher end of the hobby price spectrum (no pun intended), it has many features that would have required an instrument ten times that price in years gone by.

There are also some very inexpensive options out there. While it is true, to a degree, that you get what you pay for, it is also true that even these cheap options would be amazing to an engineer from the 1990s. Yes, of course. You could do it with a 555.

Continue reading “Spectrum Analyzer Buyer’s Guide”

Hacker Tactic: Internal ESD Diode Probing

Humans are walking high voltage generators, due to all the friction with our surroundings, wide variety of synthetic clothes, and the overall ever-present static charges. Our electronics are sensitive to electrostatic discharge (ESD), and often they’re sensitive in a way most infuriating – causing spurious errors and lockups. Is there a wacky error in your design that will repeat in the next batch, or did you just accidentally zap a GPIO? You wouldn’t know until you meticulously check the design, or maybe it’s possible for you to grab another board.

Thankfully, in modern-day Western climates and with modern tech, you are not likely to encounter ESD-caused problems, but they were way more prominent back in the day. For instance, older hackers will have stories of how FETs were more sensitive, and touching the gate pin mindlessly could kill the FET you’re working with. Now, we’ve fixed this problem, in large part because we have added ESD-protective diodes inside the active components most affected.

These diodes don’t just help against ESD – they’re a general safety measure for protecting IC and transistor pins, and they also might help avoid damaging IC pins if you mix. They also might lead to funny and unexpected results, like parts of your circuit powering when you don’t expect them to! However, there’s an awesome thing that not that many hackers know — they let you debug and repair your circuits in a way you might not have imagined.

Continue reading “Hacker Tactic: Internal ESD Diode Probing”