TI-83 Gets CircuitPython Upgrade

Graphing calculators are an interesting niche market these days. They’re relatively underpowered, and usually come with cheap, low resolution screens to boot. They remain viable almost solely due to their use in education and the fact that their limited connectivity makes them suitable for use in exams. The market is starting to hot up, though – and TI have recently been doing some interesting work with Python on their TI-83.

Rumor has it that TI have been unable to get Python to run viably directly on the TI-83 Premium CE. This led to the development of the TI-Python peripheral, which plugs into the calculator’s expansion port. This allows users to program in Python, with the TI-Python doing the work and the calculator essentially acting as a thin client. The chip inside is an Atmel SAMD21E18A-U, and is apparently running Adafruit’s CircuitPython platform.

This discovery led to further digging, of course. With some hacking, the TI-Python can instead be replaced with other boards based on Atmel SAMD21 chips. For those of you that aren’t in Atmel’s sales team, that means it’s possible to use things like the Adafruit Trinket M0 and the Arduino Zero instead, when flashed with the appropriate CircuitPython firmware. It’s a tricky business, involving USB IDs and some other hacks, but it’s nothing that can’t be achieved in a few hours or so.

This is a hack in its early days, so it’s currently more about building a platform at this stage rather then building fully-fledged projects just yet. We’re fully expecting to see Twitter clients and multiplayer games hit the TI-83 platform before long, of course. When you’ve done it, chuck us a link on the tip line.

[Thanks to PT for the tip!]

That TRS Jack On Your Graphing Calculator Does More Than You Think

It’s not Apple IIs, and it’s not Raspberry Pis. The most important computing platform for teaching kids programming is the Texas Instruments graphing calculator. These things have been around in one form or another for almost three decades, and for a lot of budding hackers out there, this was the first computer they owned and had complete access to.

As hacking graphing calculators is a favorite for Maker Faires, we were pleased to see Cemetech make it out to this year’s World Maker Faire in New York last weekend. They’re the main driving force behind turning these pocket computers with truly terrible displays into usable computing platforms.

As you would expect from any booth, Cemetech brought out the goods demonstrating exactly what a graphing calculator can do. The most impressive, at least from a soldering standpoint, is their LED cube controlled by a graphing calculator. The electronics are simple, and just a few 595s and transistors, but this LED cube is taking serial data directly from the link cable on a graphing calculator. Of course, the PCB for the LED cube is designed as an Arduino shield for ease of prototyping, but make no mistake: this is an LED cube controlled by a calculator.

If you can send serial data to a shift register from a graphing calculator, that means you can send serial data to anything, bringing us to Cemetech’s next great build featured this year. It’s an N-gauge model train, with complete control over the locomotive.

There’s a lot more to controlling model trains these days than simply connecting a big ‘ol variac to the tracks. This setup uses Direct Cab Control (DCC), a system that modulates commands for locomotives while still providing 12-15V to the tracks. There’s a good Arduino library, and when you have that, you can easily port it to a graphing calculator.

Cemetech is one of the perennial favorites at Maker Faire, and over the years we’ve seen everything from the Ultimate TI-83+ sporting an RGB backlight and a PS/2 port to a game of graphing calculator Whac-A-Mole. It’s all a great example of what you can do with the programmable computer every 90s kid had, and an introduction to computer programming education, something Cemetech is really pushing out there with some hard work.

Hackaday Links Column Banner

Hackaday Links: June 14, 2015

You know we’re running this gigantic contest to build hardware and send someone to space, right? We’re doing community voting right now. If you’re on Hackaday.io, head over there and pick the best project. We’re giving away t-shirts and $1000 gift cards to people who vote. The drawing for this round is next Friday.

MicroPython is a pretty interesting development in the area of interpreted languages running on microcontrollers. It’s Python, the BASIC of the modern era, and now it’s being funded by the ESA. Great news, there’s going to be a port to SPARC, and it looks like MicroPython is going to be in a few satellites.

[EloquentlyMawkishBunny]’s calculator stopped working on the morning of his AP Physics test. It was the ribbon cable for the display. What did he do? He grabbed some magnet wire and made it work. If I’m reading this right, he did this the day of his AP test. Wow.

[Will] has made a name for himself by building roller coasters in his backyard. He’s also worked on the ProtoPalette, and now he’s building a hackerspace in Concord, California.

[Josh] needed to drill some very large holes with his mill. He decided a hole saw was the easiest way to do this, but his hole saw has a hex shank. He ended up chopping the shank of a hole saw extension, basically turning it into a hex to round adapter.

Did you know the Arduino IDE on Raspbian is stuck at version 1.0.5? The newest version is 1.6.4, and there’s useful stuff like autosave in the IDE now. Amazing. [CRImier] got the latest Arduino IDE working on the Raspberry Pi 2. Yes, there’s an issue up but if for some reason you’re programming Arduinos on the Pi, you should probably do this yourself.

Oooohhhh, case modding. The Intel NUC is a pretty interesting platform for case modding; it’s small, and I shouldn’t have to remind anyone of all the cool case mods that were created when the Mini-ITX format gained popularity in the early ‘aughts. [Femke] got herself an Intel NUC, made a case, and the results are amazing. How’d she get that metal bowl? Metal spinning. Very cool.

Super Smash Bros On A Calculator

Move over, BlockDude! There’s a new calculator game in town. [Hayleia] and a few other programmers have been hard at work on a clone of Super Smash Bros for graphing calculators that is sure to keep you busy in your next calculus class.

The game, called Smash Bros Open, is based on the Nintendo fighting game and is written specifically for monochrome z80 calculators (the TI-83 and TI-84 being the most ubiquitous of these). The game runs in 6 MHz mode with a simple background, or it can run in 15 MHz mode with a more complicated background. The programmers intend for the game to be open source, so that anyone can add anything to the games that they want, with the hopes of making the game true to its namesake.

Anyone who is looking to download a copy of this should know that Smash Bros Open is currently a work-in-progress. Right now both players need to play on the same calculator (with different keys), and Fox is the only playable character. The programmers hope to resolve the two player issue by using a second calculator as a game pad, or by linking the two calculators using Global CalcNet. As for the other characters, those can be added by others based on the existing code which is available on the project’s forum post!

Thanks to [Chris] for the tip.

Cemetech’s Ultimate Calculator V2

[Christopher] piped up in our comments on a recent post about using laptop touch pads in other things, noting that he had done this on his Ultimate Calculator Version 2. What he’s done is upgraded his TI-83+ calculator to house a number of improvements and customizations. It now has a stronger RGB backlight so he can illuminate his screen in whatever color strikes his mood. He also integrated a PS2 port so he could use an external mouse/ keyboard. What brought this to our comments though, was the embedded laptop touchpad on the back that is also fully functional. He topped it all off with a rather pleasing paint job as well.

The funny thing is, we caught a glimpse of this thing in a previous post about networking these calculators.

Making Sweet Floppy Drive Music With A Calculator

floppy-music-ti83-style

[Chris] says that he’s been pretty busy lately, leaving little opportunity for hacking. However he did manage to find a little time to put together a small project that has occupied his to-do list for a while – a floppy drive music controller.

We have seen hacks that use microcontrollers to actuate floppy drive motors before, but we can’t remember anything that used a calculator to do the job instead. While a microcontroller gives you plenty of I/O pins to play with, [Chris’] Ti-83+ only has two.

Even with the calculator’s I/O limitations, he didn’t find the task too overly difficult as he merely needed to hold a pair of the drive’s pins low, while pulsing two others. He modified a media player written for Ti calculators to output the necessary control signals, then he cranked out some tunes.

As you can see in the video below, his simple setup works quite well – not bad for just a few hours’ work.

Continue reading “Making Sweet Floppy Drive Music With A Calculator”

Global CALCnet: Your TI-83 Just Acquired Internet

Global CALCnet lets you connect your TI graphic calculator to the Internet and use your favorite services like instant messaging and Internet relay chat. It also provides the option of worldwide multiplayer functionality for games ported to the device such as Scorched Earth and Tetris. We looked in on [Christopher Mitchell’s] CALCnet in December when it was being used to create local area networks with the adding machines. He’s taken that up a notch with a helping hand from Arduino. An Arduino board is used to connect the serial communications from the calculator to an Internet connected PC via the Arduino’s USB capabilities.

Think this will waste a lot of time in schools? Unlikely since an Internet connected computer is integral for this system to work. If you have a computer in front of you why waste time on the calculator network? Still, how hard would it be to build a WiFi module that can directly connect them to an access point? That may be a moot point as the Slashdot article that pointed us to global CALCnet also links to a calculator port of DOOM. It runs quite well, as you can see in the video after the break. This is a must-have for anyone owning a TI Nspire that can run it.

Continue reading “Global CALCnet: Your TI-83 Just Acquired Internet”