Retrotechtacular: Step Up And Get Your Transformer Training

Whether you’re just getting into electronics or could use a refresher on some component or phenomenon, it’s hard to beat the training films made by the U.S. military. This 1965 overview of transformers and their operations is another great example of clear and concise instruction, this time by the Air Force.

It opens to a sweeping orchestral piece reminiscent of the I Love Lucy theme. A lone instructor introduces the idea of transformers, their principles, and their applications in what seems to be a single take. We learn that transformers can increase or reduce voltage, stepping it up or down through electromagnetic induction. He moves on to describe transformer action, whereby voltages are increased or decreased depending on the ratio of turns in the primary winding to that of the secondary winding.

He explains that transformer action does not change the energy involved. Whether the turns ratio is 1:2 or 1:10, power remains the same from the primary to the secondary winding. After touching briefly on the coefficient of coupling, he discusses four types of transformers: power, audio, RF, and autotransformers.

Continue reading “Retrotechtacular: Step Up And Get Your Transformer Training”

Transformer Inductive Coupling Simulation Is SFW

[James] has a friend who teaches at the local community college. When this friend asked him to build a transformer coupling simulation, he was more than happy to oblige. Fortunately for us, he also made a video that explains what is happening while  showing the output on a ‘scope.

For the simulation, [James] built primary and secondary coils using PVC pipe. The primary coil consists of 11 turns of 14AWG stranded wire with 4V running through it applied. The first secondary he demonstrates is similarly built, but has 13 turns. As you’ll see, the first coil induces ~1.5V in the second coil. [James] first couples it with the two windings going the same way, which results in the two 2Mhz waveforms being in phase with each other. When he inserts the secondary the other way, its waveform is out of phase with the primary’s.

His second secondary has the same diameter PVC core, but was wound with ~60 turns of much thinner wire—28AWG bell wire to be exact. This match-up induces 10V on the secondary coil from the 4V he put on the primary. [James]’ demonstration includes a brief Lissajous pattern near the end. If you don’t know enough about those, here’s a good demonstration of the basics coupled with an explanation of the mechanics behind them.

Continue reading “Transformer Inductive Coupling Simulation Is SFW”

Jacob’s Ladder Using A 10kV Oil Transformer

Jacob's ladder using an Oil Furnace Transformer

Jacob’s Ladders are a staple experiment in any self-respecting mad scientist’s lair — err, a hacker’s workshop. And why not? High voltage, arcing electricity, likely more than enough to kill you even — brilliant! But in all their awesomeness, Jacob’s ladders really aren’t that complex.

In [Kevin Darrah’s] latest tutorial he shows us how to make one out of a transformer taken from an oil furnace. Why exactly does an oil furnace even have a high voltage transformer in the first place? They’re actually used as the ignition source, like a pilot light!

The one [Kevin] has is a 110VAC to 10,000VAC transformer, which puts out about 20mA (probably enough to kill you). And to turn it into a Jacob’s Ladder, you’ll just need a two long stiff wires (copper is a good candidate). The wires are closest at the bottom where the transformer can easily arc — this arc then ionizes and heats the air causing it to rise, carrying the arc with it. As the arc continues up the ladder it gets longer and longer as the wires become farther apart, becoming more and more unstable until it breaks. When this happens the arc forms again at the lowest point of resistance — the bottom.

Continue reading “Jacob’s Ladder Using A 10kV Oil Transformer”

Black Knight Transformer — A Military Octorotor You Can Ride In

fig3-sm

We saw this pop up a few times before and to be honest, we weren’t sure if it was actually real or not. This is the Advanced Tactics Black Knight Transformer — the world’s first VTOL (vertical take off and landing) aircraft that also doubles as an off-road vehicle.

Designed and built in California, it just received government approval and Advanced Tactics has released the first driving and flight test video. It was apparently designed as a rapid-response evacuation vehicle for wounded soldiers in war affected zones. It features a whopping eight individually driven rotors that swing out on “transforming” arms during flight. It also has a removable ground drive-train which can be swapped out for an amphibious boat hull, or even a cargo pod!

At the forefront of large-scale multicopter design and manufacturing, we poked around Advanced Tactic’s website a bit and found another one of their projects, the Transformer Panther sUAS — a miniature version of the Black Knight, designed as a small unmanned aircraft system that is also capable of land and sea use.

Stick around after the break to see them in action — and let us know what you think!

Continue reading “Black Knight Transformer — A Military Octorotor You Can Ride In”

Rebuilding A 50,000 Volt Power Supply

Spark

The theory behind building power supplies is relatively easy, but putting it into practice and building a multi-kilovolt supply is hard. A big transformer in air will simply spark to itself, turning what could be something very cool into something you just don’t want to be around. [glasslinger] over on YouTube is an expert at this sort of thing, as shown in his 50,000 Volt power supply build. That’s a 55 minute long video, and trust us: it’s worth every minute of your time.

[glasslinger] began his build by taking an old 15,000 Volt neon sign transformer and repurposing the coils and cores for his gigantic 50,000 volt transformer. There was a small problem with this little bit of recycling: the neon sign transformer was potted with tar that needed to be removed.

To de-pot the transformer, [glasslinger] made a small oven from a helium tank, melting all the goo out with an old school gasoline torch. From there, hours and hours of cleaning ensued.

The transformer cores were cleaned up and cut down, and a new primary wound. A small-scale test (shown above) using the old secondaries resulted in a proof of concept with some very large sparks. The next step was putting the entire transformer in a box and filling it with transformer oil.

The money shot for this build comes when [glasslinger] assembles his transformer, rectifier, and all the other electronics into a single, surprisingly compact unit and turns standard wall power into a 50,000 Volt spark. You can literally smell the ozone from the video.

 

Continue reading “Rebuilding A 50,000 Volt Power Supply”

“Professor Kill A. Volt” Shocks Pumpkins With His Tesla Coil

jj

[JJ Dasher] is back again this year, shocking some pumpkins! (Volume warning). We featured [JJ] two years ago for his Halloween candy shocking Tesla coil. He apparently has been busy in his mad scientist laboratory doing some upgrades. This year his coil is producing 5 foot long streaming arcs!

[JJ’s] Tesla coil is a uses two microwave oven transformers as a power supply. He also uses an Asynchronous Rotary Spark Gap (ASRG). As the name implies, a rotary spark gap uses a motor to turn a rotor. At certain points in the rotation, the rotor creates a small enough gap that a high voltage spark can jump across, energizing the primary coil. This idea is similar to an automotive ignition system distributor. [Pete] gives a great example of an ASRG in this video. Most ASRG based Tesla coils use the small motor to spin up the spark gap. Varying the speed of the motor creates the characteristic “motor revving” noise heard in the final arcs of the Tesla Coil.

[JJ] made things a bit more interesting by installing a couple of fluorescent bulbs inside a pumpkin near the coil. The coil lights them easily, and they glow even brighter when the pumpkin is struck. Still not satisfied, he also donned his grounded chainmail gloves and drew the arc to himself. We always love seeing people safely taking hits from massive Tesla coils, but this definitely falls under the “don’t try this at home” banner.

Continue reading ““Professor Kill A. Volt” Shocks Pumpkins With His Tesla Coil”

Homebuilt 30kV High Voltage Power Supply

If you have need for 30,000 volts to launch your ionocraft (lifter) or power other DIY projects then shuttle over to RimstarOrg’s YouTube channel and checkout [Steven Dufresne’s] homebuilt 30kV power supply. The construction details that [Steven] includes in his videos are always amazing, especially for visual learners. If you prefer text over video he was kind enough to share a schematic and full write up at rimstar.org.

The power supply can be configured for 1.2kV – 4.6kV or 4kV – 30kV at the output while requiring 0-24V DC at the input. In the video [Steven] tries two power supplies. His homemade DC bench power supply at 8V and 2.5A and also a laptop power supply rated at 20V 1.8A DC. A couple of common 2N3055 power transistors, proper wattage resistors, a flyback transformer and a high voltage tripler is about all you’ll need to scrounge up. The flyback transformer can be found in old CRT type televisions, and he does go into details on rewinding the primary for this build. The high voltage tripler [Steven] references might be a bit harder to source. He lists a few alternates for the tripler but even those are scarce: NTE 521, Siemens 76-1 N094, 1895-641-045. There are lots of voltage multiplier details in the wild, but keep in mind this tripler needs to operate up to 30kV.

Join us after the break to watch the video and for a little advice from Mr. Safety.

Continue reading “Homebuilt 30kV High Voltage Power Supply”