Flat Transformer Gives This PCB Tesla Coil Some Kick

Arguably, the most tedious part of any Tesla coil build is winding the transformer. Getting that fine wire wound onto a suitable form, making everything neat, and making sure it’s electrically and mechanically sound can be tricky, and it’s a make-or-break proposition, both in terms of the function and the aesthetics of the final product. So this high-output printed circuit Tesla should take away some of that tedium and uncertainty.

Now, PCB coils are nothing new — we’ve seen plenty of examples used for everything from motors to speakers. We’ve even seen a few PCB Tesla coils, but as [Ray Ring] points out, these have mostly been lower-output coils that fail to bring the heat, as it were. His printed coil generates some pretty serious streamers — a foot long (30 cm) in some cases. The secondary of the coil has 6-mil traces spaced 6 mils apart, for a total of 240 turns. The primary is a single 240-mil trace on the other side of the board, and the whole thing is potted in a clear, two-part epoxy resin to prevent arcing. Driven by the non-resonant half-bridge driver living on the PCB below it, the coil can really pack a punch. A complete schematic and build info can be found in the link above, while the video below shows off just what it can do.

Honestly, for the amount of work the PCB coil saves, we’re tempted to give this a try. It might not have the classic good looks of a hand-wound coil, but it certainly gets the job done. Continue reading “Flat Transformer Gives This PCB Tesla Coil Some Kick”

Fail Of The Week: The Spot Welder Upgrade That Wasn’t

Even when you build something really, really nice, there’s always room for improvement, right? As it turns out for this attempted upgrade to a DIY spot welder, not so much.

You’ll no doubt recall [Mark Presling]’s remarkably polished and professional spot welder build that we featured some time ago. It’s a beauty, with a lot of thought and effort put into not only the fit and finish but the function as well. Still, [Mark] was not satisfied; he felt that the welder was a little underpowered, and the rewound microwave oven transformer was too noisy. Taking inspiration from an old industrial spot welder, he decided to rebuild the transformer by swapping the double loop of battery cable typically used as a secondary with a single loop of thick copper stock. Lacking the proper sized bar, though, he laminated multiple thin copper sheets together before forming the loop. On paper, the new secondary’s higher cross-sectional area should carry more current, but in practice, he saw no difference in the weld current or his results. It wasn’t all bad news, though — the welder is nearly silent now, and the replaced secondary windings were probably a safety issue anyway, since the cable insulation had started to melt.

Given [Mark]’s obvious attention to detail, we have no doubt he’ll be tackling this again, and that he’ll eventually solve the problem. What suggestions would you make? Where did the upgrade go wrong? Was it the use of a laminated secondary rather than solid bar stock? Or perhaps this is the best this MOT can do? Sound off in the comments section.

Continue reading “Fail Of The Week: The Spot Welder Upgrade That Wasn’t”

Embiggen Your Eclipse 2017 Experience With A Sun Funnel

As exciting as Eclipse 2017 is going to be this Monday, for some folks it might appear a bit — underwhelming. Our star only occupies about half a degree of the sky, and looking at the partial phase with eclipse glasses might leave you yearning for a bigger image. If that’s you, you’ll need to build a sun funnel for super-sized eclipse fun.

[Grady] at Practical Engineering is not going to be lucky enough to be within the path of totality, but he is going to be watching the eclipse with a bunch of school kids. Rather than just outfitting his telescope with a filter and having the kids queue up for a quick peek, he built what amounts to a projection screen for the telescope’s eyepiece. It’s just a long funnel, and while [Grady] chose aluminum and rivets, almost any light, stiff material will do. He provides a formula for figuring out how long the funnel needs to be for your scope, along with plans for laying out the funnel. We have to take exception with his choice of screen material — it seems like the texture of the translucent shower curtain might interfere with the image a bit. But still, the results look pretty good in the video below.

Eclipse 2017 is almost here! How are you planning to enjoy this celestial alignment? By proving Einstein right? By studying radio propagation changes? Or just by wearing a box on your head? Sound off in the comments.

Continue reading “Embiggen Your Eclipse 2017 Experience With A Sun Funnel”

Retrotechtacular: Step Up And Get Your Transformer Training

Whether you’re just getting into electronics or could use a refresher on some component or phenomenon, it’s hard to beat the training films made by the U.S. military. This 1965 overview of transformers and their operations is another great example of clear and concise instruction, this time by the Air Force.

It opens to a sweeping orchestral piece reminiscent of the I Love Lucy theme. A lone instructor introduces the idea of transformers, their principles, and their applications in what seems to be a single take. We learn that transformers can increase or reduce voltage, stepping it up or down through electromagnetic induction. He moves on to describe transformer action, whereby voltages are increased or decreased depending on the ratio of turns in the primary winding to that of the secondary winding.

He explains that transformer action does not change the energy involved. Whether the turns ratio is 1:2 or 1:10, power remains the same from the primary to the secondary winding. After touching briefly on the coefficient of coupling, he discusses four types of transformers: power, audio, RF, and autotransformers.

Continue reading “Retrotechtacular: Step Up And Get Your Transformer Training”

Apple Logo Secondary Monitor


MacMod member [EdsJunk] has modified the Apple logo on his MacBook to act as a second video display (cache). There’s a video embedded below showing it playing Quicktime videos and the iTunes visualizer. Unfortunately there aren’t any details of the hardware used. From the display settings, it looks to have a resolution of at least 640×480. We hope to see more details soon.

Continue reading “Apple Logo Secondary Monitor”