Hackaday Visits the Electric City

Much to the chagrin of local historians, the city of Scranton, Pennsylvania is today best known as the setting for the American version of The Office. But while the exploits of Dunder Mifflin’s best and brightest might make for a good Netflix binge, there’s a lot more to the historic city than the fictional paper company. From its beginnings as a major supplier of anthracite coal to the introduction of America’s first electrically operated trolley system on its streets, Scranton earned its nickname “The Electric City” by being a major technological hub from the Industrial Revolution through to the Second World War.

Today, the mines and furnaces of Scranton lie silent but not forgotten. In the 1980’s, the city started turning what remained of their industrial sites into historic landmarks and museums with the help of State and Federal grants. I recently got a chance to tour some of these locations, and came away very impressed. They’re an exceptional look into the early technology and processes which helped turn America into an industrial juggernaut.

While no substitute for visiting these museums and parks for yourself, hopefully the following images and descriptions will give you an idea of what kind of attractions await visitors to the modern day Electric City.

Continue reading “Hackaday Visits the Electric City”

Inverted Pendulum For The Control Enthusiast

Once you step into the world of controls, you quickly realize that controlling even simple systems isn’t as easy as applying voltage to a servo. Before you start working on your own bipedal robot or scratch-built drone, though, you might want to get some practice with this intricate field of engineering. A classic problem in this area is the inverted pendulum, and [Philip] has created a great model of this which helps illustrate the basics of controls, with some AI mixed in.

Called the ZIPY, the project is a “Cart Pole” design that uses a movable cart on a trolley to balance a pendulum above. The pendulum is attached at one point to the cart. By moving the cart back and forth, the pendulum can be kept in a vertical position. The control uses the OpenAI Gym toolkit which is a way to easily use reinforcement learning algorithms in your own projects. With some Python, some 3D printed parts, and the toolkit, [Philip] was able to get his project to successfully balance the pendulum on the cart.

Of course, the OpenAI Gym toolkit is useful for many more projects where you might want some sort of machine learning to help out. If you want to play around with machine learning without having to build anything, though, you can also explore it in your browser.

Continue reading “Inverted Pendulum For The Control Enthusiast”

Uber Has An Autonomous Fatality

You have doubtlessly heard the news. A robotic Uber car in Arizona struck and killed [Elaine Herzberg] as she crossed the street. Details are sketchy, but preliminary reports indicate that the accident was unavoidable as the woman crossed the street suddenly from the shadows at night.

If and when more technical details emerge, we’ll cover them. But you can bet this is going to spark a lot of conversation about autonomous vehicles. Given that Hackaday readers are at the top of the technical ladder, it is likely that your thoughts on the matter will influence your friends, coworkers, and even your politicians. So what do you think?

Continue reading “Uber Has An Autonomous Fatality”

Shopping Trolley is Wired for Camp

[James] needed some cool transportation for the upcoming Easter Camp in New Zealand, so he created a custom motorized shopping trolley that is sure to turn heads. The base of this project is a standard mobility scooter, which conveniently has a modular design. All of the electronics have connectors for quick service and the entire rear axle and motor assembly pop off with the pull of a lever.

[James] had to do a bit of welding and chassis rework to achieve his goal of mounting a shopping cart top to the scooter’s frame. Once finished, though, the setup looked great. It was actually comfortable to sit in, as [James] made a cutout for the driver’s feet to pass through. The real fun came with the electronics. The trolley is the most wired mobility scooter mod we’ve ever seen. Most of the electronics are contained in a project box under the seat, with several Arduinos that control the various systems: interfacing with the original scooter electronics, a GPS receiver, and a GSM radio. [James] also went as far as to add RGB LED headlights, a horn, and a multi-tone siren from Jaycar.

Driving the trolley is simple. An arcade joystick selects the speed, and the scooter’s standard hand controls are used for forward, reverse, and steering. One of the more interesting mods [James] made was a custom Windows app to control the trolley via a USB radio module. The entire system can be secured, with the security code stored in NVRAM to prevent a power cycle from unlocking the system. [James] can even command the trolley to go forward or reverse from his touch screen. We’d love to see him add a steering servo to make it a completely remote-controlled solution, though this step would require some sort of clutch for manual control.

The final design works very well.  [James] may not win any drag races by keeping scooter’s original speed controls and associated electronics, but he did extend the range with larger batteries, so we’re sure the trolley will be a hit all over the camp. Similar projects have been built using the base of an electric wheelchair. If you have one that you want to control without invasive changes to the hardware, check out this accessibility hack which interfaces using a connector.

Continue reading “Shopping Trolley is Wired for Camp”

WaitLess bus tracking system

waitless

Bus systems on campus can often be frustrating. You’re standing at the stop waiting and you don’t know if it would just be faster to walk. If you have a WaitLess tracking system at your stop, you can see exactly where the bus is and make that decision much easier. The unit is self contained, solar, and equipped with wireless internet. With an Arduino at it’s core, it displays the current location of the bus by lighting an LED on a map. You can see a video of it in action after the break.

Continue reading “WaitLess bus tracking system”