The Diablo Canyon NPP in California. This thermal plant uses once-through cooling. (Credit: Doc Searls)

US DOE Sets New Nuclear Energy Targets

To tackle the growing electrification of devices, we’ll need to deploy more generation to the grid. The US Department of Energy (DOE) has unveiled a new target to triple nuclear generating capacity by 2050.

Using a combination of existing Generation III+ reactor designs, upcoming small modular and micro reactors, and “legislation like the ADVANCE Act that streamlines regulatory processes,” DOE plans to add 35 gigawatt (GW) of generating capacity by 2035 and an additional 15 GW installed per year by 2040 to hit a total capacity of 200 GW of clean, green atom power by 2050.

According to the DOE, 100 GW of nuclear power was deployed in the 1970s and 1980s, so this isn’t an entirely unprecedented scale up of nuclear, although it won’t happen overnight. One of the advantages of renewables over nuclear is the lower cost and better public perception — but a combination of technologies will create a more robust grid than an “all of your eggs in one basket” approach. Vehicle to grid storage, geothermal, solar, wind, and yes, nuclear will all have their place at the clean energy table.

If you want to know more about siting nuclear on old coal plants, we covered DOE’s report on the matter as well as some efforts to build a fusion reactor on a decommissioned coal site as well.

You Got Fusion In My Coal Plant!

While coal was predominant in the past for energy generation, plants are shutting down worldwide to improve air quality and because they aren’t cost-competitive. It’s possible that idle infrastructure could be put to good use with fusion instead.

While we’ve yet to see a fusion reactor capable of generating electricity, Type One Energy, the Tennessee Valley Authority, and Oak Ridge National Lab have announced they’re evaluating the recently-closed Bull Run Fossil Plant in Oak Ridge, Tennessee as a site for a nuclear fusion reactor. One of the main advantages for siting any new generation source on top of an old one is the ability to reuse the existing transmission infrastructure to get any generated power to the grid. Overhead satellite view of a coal-fired power plant next to a heat map showing the suitability of terrain in the region for siting a nuclear power plant

Don’t get too excited as it sounds like this is yet another prototype reactor that will be the proof-of-concept before construction of a reactor that can produce commercial power for the grid. While ambitious, the amount of investment by government entities like the Department of Energy and the state of Tennessee (>$55 million) seems to indicate they aren’t just blowing smoke.

If any of this seems familiar, you might be thinking of the Department of Energy’s report on placing advanced fission reactors on old coal sites. A little fuzzy on the difference between a stellarator and a tokamak? Checkout this explainer on some of the different ways to (non-explosively) do fusion on Earth.

Overhead satellite view of a coal-fired power plant next to a heat map showing the suitability of terrain in the region for siting a nuclear power plant

Coal To Nuclear Transition To Decarbonize The Grid

We love big projects here at Hackaday, and one of the biggest underway is the decarbonization of the electric grid. The US Department of Energy (DOE) recently published a report (PDF) on how placing nuclear reactors on coal plant sites in the US could help us get closer to the zero carbon grid of our dreams.

After evaluating both operating and recently retired coal-fired plants in the US, the researchers determined that around 80% of medium and large coal plants would be good candidates for coal to nuclear (C2N). Up to 263 GWe could be installed at over 315 different sites around the country which would be more than the 145 GWe expected to go offline as the remaining coal plants in the country shut down. Siting nuclear reactors at these existing sites could reduce installation costs 15-35% while also providing jobs for workers in the area who might otherwise be displaced when the coal plants shut down. Local greenhouse gas emissions (GHG) could drop up to 86% along with a significant drop in other air pollutants which would be another win for the fenceline communities living and working around these coal plants.

Nuclear power is certainly not without its drawbacks, but new reactor designs like TerraPower’s Natrium promise lower costs than current light water reactor designs while also being able to reuse the spent fuel from our current nuclear fleet. TerraPower is developing the first C2N project in the US at the Naughton Power Plant in Kemmerer, Wyoming.

We’ve recently covered Cogeneration and District Heating which would get a boost from more nuclear power, but, if that’s too grounded for you, might we suggest Space-Based Solar Power?

Reducing Carbon Emissions With Coal

It might seem like a paradox, but coal might hold the answer to solving carbon emission problems. The key isn’t burning it, but creating it using carbon dioxide from the atmosphere.  While this has always been possible in theory, high temperatures make it difficult in practice. However, a recent paper in Nature Communications shows how a special liquid metal electrocatalyst can convert the gas into a solid form of carbon suitable for, among other things, making high-quality capacitor electrodes. The process — you can see more about it in the video below — works at room temperatures.

It isn’t that hard to extract carbon dioxide from the air, the problem is what to do with it. Storing it as a gas or a liquid is inefficient and expensive, while converting it to a solid makes it much easier to store or even reuse for practical applications.

Continue reading “Reducing Carbon Emissions With Coal”

Hackaday Visits The Electric City

Much to the chagrin of local historians, the city of Scranton, Pennsylvania is today best known as the setting for the American version of The Office. But while the exploits of Dunder Mifflin’s best and brightest might make for a good Netflix binge, there’s a lot more to the historic city than the fictional paper company. From its beginnings as a major supplier of anthracite coal to the introduction of America’s first electrically operated trolley system on its streets, Scranton earned its nickname “The Electric City” by being a major technological hub from the Industrial Revolution through to the Second World War.

Today, the mines and furnaces of Scranton lie silent but not forgotten. In the 1980’s, the city started turning what remained of their industrial sites into historic landmarks and museums with the help of State and Federal grants. I recently got a chance to tour some of these locations, and came away very impressed. They’re an exceptional look into the early technology and processes which helped turn America into an industrial juggernaut.

While no substitute for visiting these museums and parks for yourself, hopefully the following images and descriptions will give you an idea of what kind of attractions await visitors to the modern day Electric City.

Continue reading “Hackaday Visits The Electric City”

Fail Of The Week: When Good Foundries Go Bad

Like many of us, [Tony] was entranced by the idea of casting metal, and set about building the tools he’d need to melt aluminum for lost-PLA casting. Little did he know that he was about to exceed the limits of his system and melt a hole in his patio.

[Tony]’s tale of woe begins innocently enough, and where it usually begins for wannabe metal casters: with [The King of Random]’s homemade foundry-in-a-bucket. It’s just a steel pail with a homebrew refractory lining poured in place, with a hole near the bottom to act as a nozzle for forced air, or tuyère. [Tony]’s build followed the plans pretty faithfully, but lacking the spent fire extinguisher [The King] used for a crucible in the original build, he improvised and used the bottom of an old propane cylinder. A test firing with barbecue charcoal sort of worked, but it was clear that more heat was needed. So [Tony] got hold of some fine Welsh anthracite coal, which is where the fun began. With the extra heat, the foundry became a mini-blast furnace that melted the thin steel crucible, dumping the molten aluminum into the raging coal fire. The video below shows the near catastrophe, and we hope that once [Tony] changed his pants, he hustled off to buy a cheap graphite or ceramic crucible for the next firing.

All kidding aside, this is a vivid reminder of the stakes when something unexpected (or entirely predictable) goes wrong, and the need to be prepared to deal with it. A bucket of dry sand to smother a fire might be a good idea, and protective clothing is a must. And it pays to manage your work area to minimize potential collateral damage, too — we doubt that patio will ever be the same again.

Continue reading “Fail Of The Week: When Good Foundries Go Bad”

The Trouble With Old Model Steam Engines

Model steam engines have intrigued hackers and makers for over 100 years. Many of us have seen old steam engine models up for sale at garage sales and various internet auction sites. The problem with these engines is the fact that many of them were sold as rough casting kits. This means the quality of the model is only as good as the original owner’s machining and fabrication skills.

[Keith Appleton] is something of a steam engine expert. In this pair of videos, he takes us through troubleshooting two engines. Keith goes on to show some of the common failures he’s found while working on these wonderous little machines.

First off is the paint. If you find nuts, bolts and random parts painted in different colors, the engine is probably bad. It sounds strange, but [Keith] has found this to be a rule over his years of working with these engines.

Another problem is rattles. [Keith] found one of these engines rattled terribly. The culprit was the crankshaft. Not only was it the wrong size, but it was built wrong. These engines use built up crankshafts, rather than shafts machined from a single piece of metal. This engine’s crankshaft was threaded into the crank webs rather than pinned. Whoever built it tried to re-engineer the design of the crankshaft, and failed miserably.

You can check [Keith’s] videos out after the break. Want more displacement? We’ve covered the simplest steam engine, and an insanely detailed steampunk battleship, which of course is powered by steam.

Continue reading “The Trouble With Old Model Steam Engines”