Speaker ‘Stun Gun’ Aims To Combat China’s Dancing Grannies

One of the more popular social activities in China is group dancing in public squares. Often the pastime of many middle-aged and older women, participants are colloquially referred to as “dancing grannies.” While the activity is relatively wholesome, some dancers have begun to draw the ire of their neighbourhoods with their loud music and attempts to dominate the use of public parks and recreational areas.

Naturally, a technological solution sprung up promising to solve the problem. The South China Morning Post has reported on a “stun gun” device which claims to neutralise speakers from a distance, in an effort to shut down dance gatherings. The device created a huge stir on social media, as well as many questions about how it could work. It’s simpler, and a bit less cool, than you think. Continue reading “Speaker ‘Stun Gun’ Aims To Combat China’s Dancing Grannies”

Arduino Compatible IR Blaster Keeps TVs At Bay

The TV-B-Gone is a well known piece of kit in hacker circles: just point it at a noisy TV in a public space, hit the button, and one of the hundreds of IR remote codes for “Power Off” that it blinks out in rapid succession is more than likely to get the intended response. Unfortunately, while a neat conversation starter, its practical use is limited to a single function. But not so with this programmable IR development board that creator [Djordje Mandic] describes as a “TV-B-Gone on steroids”.

Sure you can point it at a random TV and turn it off with a single button press, but you can also plug the board into your computer and control it directly through the serial connection provided by its CP2104 chip. Using a simple plain-text control protocol, the user can modify the behavior of the device and monitor its status. [Djordje] imagines this feature being used in conjunction with a smartphone application for covert applications. To that end, the device’s support for an onboard battery should keep it from draining the phone during extended operations.

Of course you could do something else entirely with it simply by firing up the Arduino IDE and writing some new code for the device’s ATmega328P microcontroller. As with the IR-enabled ESP8266 development board we looked at a few months ago, there are plenty of applications for an all-in-one board that allows you to communicate with the wide world of IR devices.

Continue reading “Arduino Compatible IR Blaster Keeps TVs At Bay”

DIY TV-B-Gone Is A-OK

Where won’t they put a TV these days? We’ve even seen one creeping behind semi-transparent mirror film in the ladies’ room of a sports bar, though that one didn’t last long. Up until that moment, we had never wished so hard for a TV-B-Gone, especially one as small and powerful as this DIY version by [Shane].

The best thing about [Shane]’s DIY TV-B-Gone is the strength of signal, though the size is nothing to sneeze at. That’s a 10-watt array or IR LEDs out of a security camera, and you can see how much brighter it is than a single IR LED in the video after the break.

Packed inside this minty enclosure is an Arduino Nano, which holds all the TV power-off codes known to hackers and fires them off in quick succession. [Shane] salvaged a MOSFET from an electronic speed controller to drive that LED array, and there’s a voltage booster board to raise the 3.7V lithium battery to 5V. [Shane] hasn’t really had the chance to test this out in public what with the global pandemic and all, but was able to verify a working distance of 40 feet inside the house.

Don’t care for such a raw look? Hide your zapper inside a toy, like this sonic screwdriver version.

Continue reading “DIY TV-B-Gone Is A-OK”

Why Fix A Remote When You Can Just Build A New Device?

Those who have been around the block, and the sun, a fair few times will know that they certainly don’t make ’em like they used to. It doesn’t particularly matter what “them” is; it’s merely a widely accepted fact that society has trended towards more disposable products over ones that have a long service life. [mcu_nerd] was suffering from this very problem, as their TV remote had its power button begin to fail. Of course, hackers don’t see problems – they merely see opportunities for projects.

[mcu_nerd] decided to skip repairing the TV remote, under the suspicion that disassembling the device would likely lead to its destruction. Instead, an Atmega328P development board was pressed into service as a replacement remote, with the addition of an IR LED and a push button. Whereas the TV-B-Gone existed as a device to cause havoc by switching televisions off, [mcu_nerd]’s TV-B-On does the opposite job.

A later revision was spun up with its own PCB, and features an Attiny85, which is more than capable of handling the job. Showing thoughts of the future in the design, there are provisions for extra buttons to be added should the project require a nicer enclosure, and a space for an external crystal if necessary.

These devices have a long and storied history; we reported on a particularly powerful version back in 2009.

Hacklet 118 – Infrared And Universal Remote Controls

The first remote control for a TV was the Zenith Space Command back in the 1950’s. Space Command used sounds at ultrasonic frequencies to control the set. It wasn’t until the 1980’s and the Viewstar cable box that infrared entered the picture. Remote controls spread like wildfire. It wasn’t long before every piece of consumer electronics had one. Coffee tables were littered with the devices. It didn’t take long for universal remotes to hit the scene. [Woz] himself worked on the CL9 Core device, back in 1987. Even in today’s world of smart TV’s and the internet of things, universal remotes are still a big item. Hackers, makers, and engineers are always trying to build a device that works better for them. This week’s Hacklet is about some of the best universal and IR remote projects on Hackaday.io!

smoteWe start with [Harikrishna] and zmote. Zmote is an open source WiFi enabled, infrared,  360° remote control. That’s a mouthful. It might be easier to say it’s an ESP8266 and some IR LEDs. An ESP-01 module connects the device to WiFi and provides the 32-bit processor which runs the show. Learning functionality comes courtesy of a TSOP1738 modulated infrared receiver. The beauty of the Zmote is in the software. REST and MQTT connectivity are available. Everything is MIT licensed, and all the code is available on Github.

 

easton

Next up is [Benjamin Kenobi] with TV Remote Control, Limited. Not everyone can operate the tiny buttons on a modern remote. [Benjamin] built this device for Easton, a special kid with a disability that impairs his motor skills. The 3D printed case holds two buttons – one for power, and one to change the channel. An Arduino Nano running [Ken Shirriff’s] IR library is the brains of the operation. The IR signal timing is hard coded for simplicity. One problem [Ben] ran into was the Nano’s high current draw, even in sleep mode. Batteries wouldn’t last a week. A simple diode circuit with a reed relay keeps the Nano shut down until Easton presses a button.

 

openirNext we have [Nevyn] with OpenIR – Infrared Remote Control. A dead DSLR remote shutter release was all the motivation [Nevyn] needed to start work on his own universal remote control. OpenIR can be connected to (and controlled by) just about anything with a UART – a PC via an FTDI cable, a Bluetooth module, even an ESP8266. The module can be programmed by entering pulse length data through a custom Windows application. The Windows app even allows the user to view the pulses graphically, like a scope. The data is stored on an EEPROM on OpenIR’s PCB. Once programmed, the OpenIR board is ready to control the world.

onebuttonFinally, we have [facelessloser] with One button TV remote. This project may be the simplest open source remote control this side of TV-B-GONE. He wanted to build a simple remote control for his young daughter to scan between the various kids channels. A simple toggle switch turns the device on, and one button performs the rest of the magic. [Facelessloser] wanted to “move up” from an Arduino to an ATtiny85. This project became part of his ATtiny education. A custom PCB from OSH Park ties things together. A simple black project box keeps the electronics safe from tiny fingers – at least until she’s old enough to use a screwdriver.

If you want to see more IR and universal remote��projects, check out our new infrared and universal remote projects list. See a project I might have missed? Don’t be shy, just drop me a message on Hackaday.io. That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

A Mountain Of Prizes For Projects Using These Parts

Here’s your chance to bring some great stuff home from The Hackaday Prize. For the next 3 weeks we’ll be looking for the best entries using Atmel, Freescale, Microchip, and Texas Instruments parts.

Each of the four contests (yes, four running concurrently) will award the top 50 projects. That’s 200 in total being recognized. The odds are really in your favor — currently some of those lists have less than 50 projects on them — so enter yours right away! Scroll down to see the mountain of prizes that we have for this epic run.

Make Sure We Know About Your Entry

There are two things you need to do to be eligible for this pile of awesome stuff:

  1. Enter your project in the 2015 Hackaday Prize
  2. Leave a comment here with a link to your project and we’ll add it to the list

Do this by the morning of Monday, June 29th to make sure you’re in the running. We’ve been diligent about adding entries to the lists for Atmel, Freescale, Microchip, and Texas Instruments but at the rate new entries have been coming in it’s easy to miss one here or there. Don’t be bashful about asking to be added to these lists!

The prerequisite is to be using a part from one of these four manufacturers. We’ll be looking at these lists for projects using great ideas which have also been well-documented. Tells us why you’re building it, what it does, how you came up with the idea… you know, the whole story!

The Loot

Up for grabs in each of the 4 contests are:

3x Mooshimeters which is a multimeter that uses your smartphone as a wireless readout.

2x DS Logic analyzers which [Adam] reviewed a few weeks back.

15x Stickvise to hold your PCBs (and other things) in place while you work

A continuation of what we’re giving away in each of the 4 contests:

10x Bluefruit LE Sniffers to help you figure out what’s being transmitted by your BTLE devices

10x Cordwood Puzzles; grab your iron and tackle this head-scratching soldering challenge

10x TV-B-Gone is an iconic invention from [Mitch Altman]; one button turns off all TVs


The 2015 Hackaday Prize is sponsored by:

Sonic Screwdriver Meets TV-B-Gone

sonic

[furrysalamander] has a friend that is a really big Doctor Who fan. It happens that this friend has a birthday coming up, and [furrysalamander] wanted to get her something amazing. A Sonic Screwdriver is always a great gift, but [furrysalamander] wanted to put his personal touch on it. He ended up adding a TV-B-Gone to [10]’s screwdriver, turning a fictional deus ex machina into a functional device.

The body of the Sonic comes from this replica of [10]’s screwdriver from Think Geek. Inside, the screwdriver has space for a battery a circuit board to control the lights and sound normally expected of a sonic screwdriver. [furrysalamander] added a freeform circuit composed of an ATtiny85, a transistor, LED, and a few resistors to add the ability to turn just about any TV off.

Of course [furrysalamander] needed to program the ATtiny with the TV-B-Gone firmware, and lacking any AVR development tools he used a Raspberry Pi’s GPIO pins to write the firmware to the microcontroller. That’s something we’ve seen before, but [furrysalamander] is a champ for including the process in his Instructable.

The end result is a Sonic Screwdriver that doesn’t work on wood and can’t break a deadlock seal. It turns off TVs just fine, though, and looks great to boot. You can check out a demo of [furrysalamander]’s sonic in action after the break.

Continue reading “Sonic Screwdriver Meets TV-B-Gone”