Santa’s Autonomous Helping Hands Let the Jolly ol’ Fellow Kick Back this Season

For those skeptical about the feasibility of Santa’s annual delivery schedule, here’s an autonomous piece of the puzzle that will bewilder even the most hard-hearted of non-believers.

The folks over at the Center of Excellence Cognitive Interaction Technology (CITEC) in Germany have whipped together a fantastic demo featuring Santa’s extra pair of helping hands. In the two-and-a-half minute video, the robot executes a suite of impressive autonomous stocking-stuffing maneuvers: from recognizing the open hole in the stocking, to grasping specific candies from the cluster of goodies available.

On the hardware-side, the arms appear to be a KUKA-variant, while on the software-side, the visualizations are being handled by the open source robot software ROS‘ RVIZ tool.

If some of the props in the video look familiar, you’ll find that the researchers at CITEC have already explored some stellar perception, classification, and grasping of related research topics. Who knew this pair of hands would be so jolly to clock some overtime this holiday season? The entire video is set to a crisp computer-voiced jingle that serves as a sneaky summary of their approach to this project.

Now, if only we could set these hands off to do our other dirty work….

Continue reading “Santa’s Autonomous Helping Hands Let the Jolly ol’ Fellow Kick Back this Season”

First Ever Parts Emailed to Space

The shocking thing is not that this happened. The shocking thing is how normal it seems. An astronaut inside a space station needed a ratcheting socket wrench. Someone else on Earth drew it up on a computer then e-mailed the astronaut. The astronaut clicked a button and then the tool was squirted out of a nozzle. Then he picked up and used the tool for the job he needed done. No big deal.

The story itself is almost uneventful – of course we can do these things now. Sure, it happens to be the first time in mankind’s history we have done this. Yes, it is revolutionary to be able to create tools on demand rather than wait months for one to be built planet-side and put onto the next resupply rocket. But, amateurs living in places without even widespread electricity or running water have already built these machines from actual garbage.

Every once in a while a story slaps us with how much the future is now.

These particular 3d prints were duplicated on the ground, and both sets preserved for future comparative analysis to see if microgravity has any effect on 3d prints. They have an eye on sending them to Mars, a journey where resupply is more than just a couple-month inconvenience.

See the first link above for more detail and photos of NASA’s 3d printer and the Microgravity Science Glovebox in the Columbus laboratory module.

Right Hand Loses Job As Head-Mouse Enters Mousing Arena

Moving the cursor around your computer screen is an everyday occurrence that we humans do not give much of a second thought to. But what if you didn’t have to move your hands from the keyboard anymore? Sure there are keyboards with Track Point or even track pads not to far from the keys, which isn’t too bad. What if you could just slightly point your face in the desired direction the mouse would move? The [Sci-Spot] folks wondered that same question and came up with a DIY Head Mouse.

The concept is pretty darn simple; a web cam is mounted to the user’s head and points at the computer screen. Mounted on top of the screen is one IR LED. Our eyes can not see the IR light so it is not annoying or distracting. The camera, however, is filtered to only see IR by placing a couple of layers of camera film negative over the lens. Before you go complaining about strapping a camera to your noggin just think of building it into a hat, which we’ve seen used for adaptive technologies like this PS3 controller.

Custom software was written to move the mouse cursor; see the black window in the above dialog box? That represents the webcam’s field of view and the white spot is the IR LED. When the user’s head moves, the IR LED moves in relation to the camera’s field of view, in turn telling the computer to move the cursor a certain amount. There are a couple of options available like ‘magnification’ which changes how much the cursor moves with a given amount of head movement and ‘deadzone’ that ignores extremely small movements that can result from breathing.

There is no mention of how button clicks are recorded but we think a couple of buttons right below the space bar would be great. The control software is available for download on the Sci-Spot page for those who want to make their own.

DIY Bicycle Roller Helps Cure The Winter Blues

Winter’s a-brewing and that is a downer for the everyday cycling enthusiast. There are certainly ‘bike trainers’ out on the market that will let you ride in your living room but they clamp to (or require replacing the) the rear axle. These bike trainers hold the bike in an upright position so that the rider can’t tip the bike and might feel a little boring for some. There is another indoor biking solution called a bicycle roller which is, just as it sounds, a few rollers on the ground that the bike wheels rest on and is not attached to the bike by any mechanical means. When the rider pedals the bike, the bike wheels spin the rollers. Even with the lack of forward momentum the spinning of the wheels is enough for the rider to stay upright.

[Sky-Monkey] wanted to bike during inclement weather and felt that a bike roller was simple enough for him to try building one. He likes building things and already had all the necessary parts kicking around his shop. The rollers are standard 3″ PVC pipe with plywood discs pressed into each end. The discs are counter-bored to accept standard skate bearings. Off the shelf steel rod make up the axles. The 3 rollers and axle assemblies are mounted in a wood frame made from dimensional lumber. It’s important that the front bike wheel also spins so [Sky-Monkey] made a power transmission belt out of cloth strap that spins the front roller with the rear.

The result is a fully functional bike roller that only cost a few hours of time to make. Video of this puppy in action after the break….

Continue reading “DIY Bicycle Roller Helps Cure The Winter Blues”

One Man’s Mini Symphony of Many Strings

If you don’t get along with your orchestra, screw ‘em. [Vladimir Pliassov] proves that you can play each of the virtuosic string instruments yourself, all at the same time (with the exception of the double bass of course).

For the life of me, I can’t imagine how long it took to get situated in this spider’s web of moving parts, but it’s impressive. With the help of this unique mechanical invention all his own, [Vladimir] is able to finger not only the neck of a violin and viola, but also a cello hoisted at an angle below his desk so that he can execute chords with his FEET. To help with the actual sound-making, a complex series of resinous fibers turn on a continuous mill of wooden beams and are tensioned ever so carefully over the bridge of each instrument. [Vladimir] controls which string is making contact with the turning fibers with a pulley wrapped around his thigh that rocks the body of the instrument back and forth.

[Vladimir] gives us an overview of his machine and how it works in the video below. If you’re itching to see it used for the purpose it was created for, well… there’s a video for that too. Even though the quality of the performance suffers a little due to the complicated nature of the setup, [Vladimir] is playing of all things, a piece for the pipe organ by J.S. Bach. Bach being hard mode in any case, let alone the one where you’re playing all the instruments yourself.

Thanks [tinkartank] for pointing out this unique invention. It’s definitely worthy of some awe!

Continue reading “One Man’s Mini Symphony of Many Strings”

Brother Builds “Zerg-Berg” Coffee Table Media Server – 38(!) USB Drives

After [Travis]’s media server died a couple months ago, his brother [Nick] secretly plotted to replace it for Christmas. Admitting it to be an “asinine Rube Goldberg” arrangement, [Nick] wanted something custom and remarkable for his sibling. Rather than go the normal SATA route, 38 USB hot-swap laptop drives were clustered together inside a custom leather enclosure with a bronzed glass top.

[Nick] picked up 45 of the 500GB drives for only $350 and designed the project around those. He spent $1000 on matching metal docks for each of them, powered by $800 worth of PCIe quad independent USB controllers – no hubs. A $550 Xeon motherboard with 14 USB ports, 16GB of RAM, a basic video card and a 1000W power supply rounded out the electronics.

Under Windows 8.1 all drives are arranged in a single giant array under Storage Spaces, no raid.

Everything was built into a wood-framed coffee table wrapped in high-end leather that [Nick] spent 65 hours hand stitching himself. Fancy brass corner braces hold the frame square. All the wires were run underneath the table so the visible surfaces are clean and clear. The table structure is lifted up on legs made from half-inch square barstock bent into a hairpin and bolted to the underside.

All together [Travis]’s Zerg-Berg media server cost in the range of $4500. [Nick] intends it to be something that lasts him a very long time.

See the video below for [Nick]’s rationalization explanation of the hardware and methods chosen.

Continue reading “Brother Builds “Zerg-Berg” Coffee Table Media Server – 38(!) USB Drives”

Arduino Thermostat Includes Vacation Mode

When [William’s] thermostat died, he wanted an upgrade. He found a few off-the-shelf Internet enabled thermostats, but they were all very expensive. He knew he could build his own for a fraction of the cost.

The primary unit synchronizes it’s time using NTP. This automatically keeps things up to date and in sync with daylight savings time. There is also a backup real-time clock chip in case the Internet connection is lost. The unit can be controlled via the physical control panel, or via a web interface. The system includes a nifty “vacation mode” that will set the temperature to a cool 60 degrees Fahrenheit while you are away. It will then automatically adjust the temperature to something more comfortable before you return home.

[William’s] home is split into three heat zones. Each zone has its own control panel including an LCD display and simple controls. The zones can be individually configured from either their own control panel or from the central panel. The panels include a DHT22 temperature and humidity sensor, an LCD display, a keypad, and support electronics. This project was clearly well thought out, and includes a host of other small features to make it easy to use.