DIY iPhone Mount for a Volvo

[Seandavid010] recently purchased a 2004 Volvo. He really liked the car except for the fact that it was missing some more modern features. He didn’t come stock with any navigation system or Bluetooth capabilities. After adding Bluetooth functionality to the stock stereo himself, he realized he would need a secure location to place his iPhone. This would allow him to control the stereo or use the navigation functions with ease. He ended up building a custom iPhone mount in just a single afternoon.

The key to this project is that the Volvo has an empty pocket on the left side of the stereo. It’s an oddly shaped vertical pocket that doesn’t seem to have any real use. [Seandavid010] decided this would be the perfect place to mount his phone. The only problem was that he didn’t want to make any permanent changes to his car. This meant no drilling into the dash and no gluing.

[Seandavid010] started by lining the pocket with blue masking tape. He then added an additional lining of plastic wrap. All of this was to protect the dashboard from what was to come next. He filled about half of the pocket with epoxy putty. We’ve seen this stuff used before in a similar project. He left a small opening in the middle with a thick washer mounted perpendicular to the ground. The washer would provide a place for an off-the-shelf iPhone holder to mount onto. [Seandavid010] also placed a flat, wooden paint stirrer underneath the putty. This created a pocket that would allow him to route cables and adapters underneath this new mount.

After letting the epoxy putty cure for an hour, he removed the block from the pocket. The stick was then removed, and any gaps were filled in with putty. The whole block was trimmed and smooth down for a more streamlined look. Finally, it was painted over with some flat black spray paint to match the color of the dashboard. An aftermarket iPhone holder allows [Seandavid010] to mount his cell phone to this new bracket. The cell phone holder allows him to rotate the phone into portrait or landscape mode, and even is adjustable to accommodate different sized phones.

Building an Industrial Control Unit With an Industrial Control Unit

Back in the 70s, industrial control was done with either relays and ladder logic or new programmable logic controllers. These devices turned switches on and off, moved stuff around a factory, and kept the entire operation running smoothly. In the late 70s, Motorola came out with an Industrial Control Unit stuffed into a tiny chip. The chip – the MC14500 – fascinated [Nicola]. He finally got around to building an ICU out of this chip, and although this was the standard way of doing things 30 years ago, it’s still an interesting build.

[Nicola]’s ICU is extremely simple, just eight relays, eight inputs, the MC14500, a clock, and some ROM. After wiring up the circuit, [Nicola] wrote a compiler, although this chip is so simple manually writing opcodes to a ROM wouldn’t be out of the question.

To demonstrate his ICU, [Nicola] connected up an on/off switch, a start button, and a stop button. The outputs are a yellow, green, and red lamp. It’s a simple task for even a relay-based control scheme, but [Nicola]’s board does everything without a hitch.

If you’re looking for something a little more complex, we saw the MC14500 being used as an almost-CPU last year.

Video below.

Continue reading “Building an Industrial Control Unit With an Industrial Control Unit”

LED Sound Board is Not Your Father

Who doesn’t like Star Wars, LEDs, and music? [Stathack] was looking for a unique piece of art to put in his living room… so he decided to make his own Vader EQ.

The EQ is a massive 4′ x 5′ piece made from plywood and MDF. [Stathack] traced the familiar helmet onto it by using a projector to project the outline onto the surface. Not having access to an extra large CNC or laser, he then painstakingly used a jigsaw to cut out all the white pieces of the design — holy cow.

This process only took weeks and weeks of sanding, filling and sanding again due to the excellent precision of a jigsaw.

Once that was all done, he created the backing plate out of MDF to provide structural support and mounting locations for the LEDs. Bit of spray paint later and a simple circuit with the Arduino and it’s both done, and awesome.

Continue reading “LED Sound Board is Not Your Father”

Dogless Dog Sleigh Is Perfect for your Winter Commute

It’s a wee bit cold in Finland right now. And while dog sledding is always an option (though mostly for tourists), one gentleman who goes by [Jibjorkl] on YouTube decided to try making his own motorized sleigh — and it’s freaking awesome.

Unfortunately our Finnish language skills aren’t exactly up to snuff so we’ll just have to describe the invention; perhaps one of our Finnish readers could add some insight if we miss anything?

It appears that [Jibjorkl] has taken a hub motor with a wheel from a standard e-bike and mounted on what looks like a store-bought sleigh. The wheel has something which looks kind of like duct tape wrapped around it to help give it extra traction in the snow. There are two lead-acid batteries sitting atop the motor assembly, but we can see an e-bike Li-on pack mounted on the side too (likely 48V 20+aH).

Regardless of how it works — it’ll take two passengers pretty damn fast through the snow. We want to build one asap.

Continue reading “Dogless Dog Sleigh Is Perfect for your Winter Commute”

ATtiny85 Does Over The Air NTSC

[CNLohr] has made a habit of using ATtiny microcontrollers for everything, and one of his most popular projects is using an ATTiny85 to generate NTSC video. With a $2 microcontroller and eight pins, [CNLohr] can put text and simple graphics on any TV. He’s back at it again, only this time the microcontroller isn’t plugged into the TV.

The ATtiny in this project is overclocked to 30MHz or so using the on-chip PLL. That, plus a few wires of sufficient length means this chip can generate and broadcast NTSC video.

[CNLohr] mentions that it should be possible to use this board to transmit closed captioning directly to a TV. If you’re looking for the simplest way to display text on a monitor with an AVR, there ‘ya go: a microcontroller and two wires. He’s unable to actually test this, as he lost the remote for his tiny TV from the turn of the millennium. Because there’s no way for [CNLohr] to enable closed captioning on his TV, he can’t build the obvious application for this circuit – a closed caption Twitter bot. That doesn’t mean you can’t.

Video below.

Continue reading “ATtiny85 Does Over The Air NTSC”

File Sharing In Your Pocket

The idea of a pirate box is pretty simple. All you need is a tiny Linux system with a WiFi adapter, a bit of storage space, and the software that will allow anyone to upload a few files to the server and an interface that will let anyone on the network download those files. In practice, though, a pirate box is a mess of wires and power adapters – not the pocketable device a WiFi file sharing box should be.

[Chris] came up with a much smaller file sharing beacon. It’s not based on a router; instead, [Chris]’ build uses an ez Share WiFi microSD adapter. It’s a device meant to push pics taken by a digital camera up to the Internet, but by configuring the software just so, up to five users can connect to the adapter and pull files down from a microSD card. The build only requires putting power to the correct pins. A LiPo battery and charge controller takes care of this problem.

There are a few shortcomings to this project – [Chris] doesn’t know how to upload files to the device. Maybe someone sufficiently clever can figure out how to make that work. Still, if you’re ever in a situation where you’d like to share some files with people in the same building, this is the device you need.

Thanks [Jake] for the tip.

Spark Goes Cellular With The Electron

A few years ago, small and cheap WiFi modules burst onto the scene and with that the Spark was born. It’s a tiny dev board with a TI CC3000 WiFi module, capable of turning any device into an Internet-connected device. It’s only the very beginning of the Internet of Things, yes, but an important step in the right direction. Now, Spark is unshackling itself from WiFi networks with the Spark Electron, a dev kit that comes with a cellular radio and data plan.

If you’ve ever tried to build a high altitude balloon, a project that will be out of range of WiFi, or anything else where cellular data would be a godsend, you’ll quickly realize Verizon, AT&T, Sprint, and all the other carriers out there don’t necessarily care about your project. As far as we can tell, Spark is the first company to fix this gaping hole in what cellular can do by offering their own service – 20,000 messages for $3/month and no contracts. Officially, that’s 1MB of data spread over 20k messages that are about 50 bytes in length.

There are a few dozen companies and organizations working on the next generation of The Internet Of Things, but these require completely new silicon and spectrum allocations or base stations. Right now, there’s exactly one way of getting a Thing on the Internet without WiFi, and that’s with cellular data. We have to hand it to Spark for this one, and can’t wait to see the projects that will be possible due to a trickle of Internet everywhere.