Robotic Owl Scares Squirrels Out of their Skin

Tired of the local squirrels tearing up his balcony garden, 11[metroSFVogange] took matters into his own hands and created this, the Squirrelinator 2000.

He had tried buying repellents and other home remedies, but nothing seemed work. And his poor indoor cat was starting to feel emasculated, as he watched through the window helplessly as his owner’s garden was destroyed by the furry terrorists.

It’s built off of an old IP camera he had collecting dust, which happens to have an alarm I/O port… perfect. To disguise the camera he picked up a owl statue for cheap from the hardware store because it was missing an eye — he plans to add a glowing red terminator eye later on, because why not?

After modifying the owl to fit the IP camera, he can now control the owl’s head with the pan and tilt functions of the camera — accessible by smartphone. He’s also thrown on a pair of solar-powered spinning props to help scare off the squirrels as well. In case that’s not enough, when the motion sensor goes off the owl shoots a squirt gun and takes pictures of the (hopefully soaked) squirrel for internet points. Classy.

Sadly, it seems to be working because he hasn’t caught any squirrels in his garden yet! We will of course update this post if a poor sucker attempts to mess with his begonias again.

[via Reddit]

Reach Out and Touch Someone with WiFi Photo Booth

[kitesurfer1404] put together a nice looking vintage photobooth with WiFi capability. He’s using an arduino to monitor the state of the buttons, LED lighting control, seven segment display AND the DSLR camera. He then uses a Raspberry Pi to control imagine processing and to provide scaling and other effects, which can take up to 20 seconds per image. The Pi runs in WiFi Access Point mode, so anyone with a WiFi capable device can connect to the photo booth and view the images.

We’ve seen some interesting twists on photo booths before. But [kitesurfer1404’s] vintage style makes his stand out all on its own. He designed the graphics with Inkscape and printed them on thick paper. He then soaked the graphics in tea for several hours and dried then for several more days to get that nice rustic look.

Be sure to check out [kitesurfer1404’s] site for full details and an assortment of high resolution images of his project.

Face Recognition For Your Next Con

[jwcrawley] is busy planning for the Makevention coming up in Bloomington, Indiana in late August. One problem when working any con is manning the door; it’s a good idea to know how many people are there, and you can’t double count people. Previously, the volunteers used dead trees to estimate how many people have turned up. This year they might go with a more technological solution: face recognition and tracking.

The project is called uWho, and it uses the faceRecognizer class in OpenCV. The purpose of the entire project is to identify who someone is from previous frames. If your face is unknown to the program, your likeness – rather, a few points of data – are added to the database of faces. It’s simple, and according to [jwcrawley], it works.

While this is technically the best way to count how many unique people show up to Makevention, there will be some discussions to see if this solution is appropriate. The program only saves unique data from a face locally, and does nothing online. It’s less evil than whatever Facebook does, but there are obvious privacy implications here.

Link to the Makevention.

Logic Noise: The Switching Sequencer Has the Beat

Logic Noise is all about using logic circuits to make sounds. Preferably sound that will be enjoyable to hear and useful for making music. This week, we’ll be scratching the surface of one of my favorite chips to use and abuse for, well, nearly anything: the 4051 8-way analog switch. As the name suggests, you can hook up eight inputs and select one from among them to be connected up to the output. (Alternatively, you can send a single input to one of eight destinations, but we won’t be doing that here.)

Why is this cool? Well, imagine that you wanted to make our oscillator play eight notes. If you worked through our first installment, you built an abrasive-sounding but versatile oscillator. I had you tapping manually on eight different resistors or turning a potentiometer to eight different positions. This week, we’ll be letting the 4051 take over some of the controls, leaving us to do the more advanced knob twiddling.

Continue reading “Logic Noise: The Switching Sequencer Has the Beat”

Inexpensive Ring Light Makes Macro Photos Easy

[edyb] uses his relatively inexpensive Cannon camera quite a bit. However, in dark areas or extreme closeups, the camera’s image quality leaves something to be desired. [edyb] hopped on the ‘net and found out that a ring light may cure his photo faux pas. Ring lights are nothing new but nothing existed for his lower-end point and shoot camera. With a USB-powered lamp and a spare AA battery pack kicking around, [edyb] decided to make his own.

First, the USB lamp was disassembled, luckily the LEDs were already laid out in a ring shape. The clear protective housing and gooseneck were discarded and the remaining PCB ring was glued directly to the camera. A female USB jack was then glued to the top of the camera and soldered to the two leads connected to the lamp’s PCB. The AA battery holder received a small switch and a male USB plug, also courtesy of a few dabs of glue. The now-assembled battery pack plugs directly into the camera via the USB connector and is its only method of attachment.

DIY Camera Light RingThe utilitarian modification may look crude but the results are anything but. Check out this close-up macro shot of a Canadian penny. Not too bad.

[edyb] has done some similar mods to other cameras, attaching components with magnets and even using an old Blackberry battery to power the LEDs showing that there is no one way to solve a problem. Check out the video after the break…

Continue reading “Inexpensive Ring Light Makes Macro Photos Easy”

A Simple but Elegant Time-Lapse Camera Slider

Time-lapse photography is always a fun way to show off the build process of a project – but sometimes it can get a bit boring and repetitive. To add a new dynamic, why not try a moving time-lapse? It’s not actually that hard to build a time-lapse slider rig. And you can do it with, or without a microcontroller.

[Charlie] built this slider rig out of square aluminum tube stock which is cheap and easy to work with. It’s also a great candidate for using pop-rivets which can speed up the assembly considerably. The camera bogey uses aluminum angle stock with skateboard bearings to ride along the track. Altogether the rig is four feet long and about 6″ wide.

To pull the camera back and forth, [Charlie] has a 0.5RPM geared motor from Servo-City which results in a travel time of about 5400 seconds (90 minutes). While there aren’t any demo videos of the rig in action, we imagine it’d produce some pretty clean motion. And thanks to its rigid construction, the camera can be pulled upside down, on angles, and even vertically.

How Fast Is Your Flash?

What’s cooler than learning about timers and interrupts on AVRs? Well, if you’re like [Matt], you can use that learning experience to build something useful – in this case, a timer for various camera flashes.

There are two ways to measure the speed of a flash. The first is the lag between when a button is pressed and when the flash goes off. As long as this is consistent, everything’s okay. The second type of speed is the pulse width. When looking at a xenon flash as time vs. brightness, they have a large spike at the beginning followed by a significant amount of decay. LED flashes are pretty much one cycle of a square wave.

To measure both types of flash speed, [Matt] used a $0.50 photodiode an a 3.5mm jack that ties into the flash remote. These bits are wired up to an Arduino, a little bit of fun work with timers and interrupts happens, and [Matt] learns how fast his flash is.