A Brief History Of ‘Drone’

In the early 1930s, Reginald Denny, an English actor living in Los Angeles, stumbled upon a young boy flying a rubber band-powered airplane. After attempting to help the boy by adjusting the rubber and control surfaces, the plane spun into the ground. Denny promised he would build another plane for the boy, and wrote to a New York model manufacturer for a kit. This first model airplane kit grew into his own hobby shop on Hollywood Boulevard, frequented by Jimmy Stewart and Henry Fonda.

The business blossomed into Radioplane Co. Inc., where Denny designed and built the first remote controlled military aircraft used by the United States. In 1944, Captain Ronald Reagan of the Army Air Forces’ Motion Picture unit wanted some film of these new flying targets and sent photographer David Conover to the Radioplane factory at the Van Nuys airport. There, Conover met Norma Jeane Dougherty and convinced her to go into modeling. She would later be known as Marilyn Monroe. The nexus of all American culture from 1930 to 1960 was a hobby shop that smelled of balsa sawdust and airplane glue. That hobby shop is now a 7-Eleven just off the 101 freeway.

Science historian James Burke had a TV wonderful show in the early 90s – Connections – where the previous paragraphs would be par for the course. Unfortunately, the timbre of public discourse has changed in the last twenty years and the worldwide revolution in communications allowing people to instantaneously exchange ideas has only led to people instantaneously exchanging opinions. The story of how the Dutch East India Company led to the rubber band led to Jimmy Stewart led to remote control led to Ronald Reagan led to Death of a Salesman has a modern fault: I’d have to use the word ‘drone’.

The word ‘propaganda’ only gained its negative connotation the late 1930s – it’s now ‘public relations’. The phrase ‘global warming’ doesn’t work with idiots in winter, so now it’s called ‘climate change’. Likewise, quadcopter pilots don’t want anyone to think their flying machine can rain hellfire missiles down on a neighborhood, so ‘drone’ is verboten. The preferred term is quadcopters, tricopters, multicopters, flying wings, fixed-wing remote-controlled vehicles, unmanned aerial systems, or toys.

I’m slightly annoyed by this and by the reminder I kindly get in my inbox every time I use the dreaded d-word. The etymology of the word ‘drone’ has nothing to do with spying, firing missiles into hospitals, or illegally killing American civilians. People like to argue, though, and I need something to point to when someone complains about my misuse of the word ‘drone’. Instead of an article on Hollywood starlets, the first remote control systems, and model aviation, you get an article on the etymology of a word. You have no one else to blame but yourself, Internet.

Continue reading “A Brief History Of ‘Drone’”

Don’t Like the FAA’s Drone Registration? Sue Them!

When the US Federal Aviation Administration (FAA) began requiring registration of quadcopters (“drones”) in the US, it took a number of hobbyists by surprise. After all, the FAA regulates real 747s, not model airplanes. [John Taylor], an RC hobbyist, has done what you do when faced with a law that you believe is unjust: he’s filed a lawsuit in the DC District Court, claiming that the FAA has overstepped their mandate.

Which one is the "aircraft"?
Which one is the “aircraft”?

The lawsuit will hinge (as legal battles often do) on the interpretation of words. The FAA’s interpretation of quadcopters to be “aircraft” rather than toys is at the center of the dispute. Putting hobbyists into a catch-22, the FAA also requires recreational RC pilots to stay under a height of 400 feet, while requiring “aircraft” to stay above 500 feet except for emergencies, take-off, or landing. Which do they mean?

The editorial staff at Hackaday is divided about whether the FAA ruling makes no sense at all or is simply making hobbyists “sign their EULA“. This writer has spent enough time inside the Beltway to know an expanse of a mandate when he sees it, and no matter which body of the US government is to blame, regulating toy planes and helicopters as if they were commercial aircraft is an over-reach. Even if the intentions are benign, it’s a poorly thought-out ruling and should be revisited.

If you agree, you now have the chance to put your money where your mouth is. The DC Area Drone User Group is putting together a legal defense fund to push [Taylor]’s case. Nobody would be cynical enough to suggest that one can buy the legal system in the US, but, paraphrasing Diamond Dave, it sure as heck can buy a good enough lawyer to get the law changed.

Real-Life Space Invaders with Drones and Lasers

We’ve seen a proliferation of real-life video game builds lately, but this one is a jaw-dropper! [Tomer Daniel] and his crew of twelve hackers, welders, and coders built a Space Invaders game for GeekCon 2016.

[Tomer] et al spent more time on the project than the writeup, so you’re going to have to content yourselves with the video, embedded below, and a raft of photos that they sent us. ([Tomer] wrote in and wanted to thank each of you, and his sponsors, by name, but that would be a couple paragraphs on its own. Condider yourselves all thanked!)
Continue reading “Real-Life Space Invaders with Drones and Lasers”

Drone Flies 12 cm on Wireless Power

[Sam M] wrote in with a quick proof-of-concept demo that blows our socks off: transferring enough power wirelessly to make a small quadcopter take flight. Wireless power transfer over any real distance still seems like magic to us. Check out the videos embedded below and you’ll see what we mean.

What’s noteworthy about this demo is that neither the transmitter nor the receiver are particularly difficult to make. The transmitting loop is etched into a PCB, and the receiver is made of copper foil tape. Going to a higher frequency facilitates this; [Sam M] is using 13.56 MHz instead of the kilohertz that most power-transfer projects use. This means that all the parts can be smaller and lighter, which is obviously important on a miniature quadrotor.

Continue reading “Drone Flies 12 cm on Wireless Power”

Waste Shark Aims To Clean Our Harbours And Oceans

Drones are adding functionality to our everyday lives, and automation is here to help humanity whether we’re ready for it or not. In a clever combination of the two, [Richard Hardiman] of RanMarine has developed small drone-boats that scoop up garbage from the ocean — he calls them ‘Waste Sharks.’

The two models — slim and fatboy — aim to collect up to 1,100 pounds of garbage apiece in the ‘mouths’ just below the water’s surface. The Waste Sharks are still restricted to remote control and are only autonomous when traveling between waypoints, but one can see how this technology could evolve into the “Wall-E of water.”

Continue reading “Waste Shark Aims To Clean Our Harbours And Oceans”

Open Hardware RC Radios

A decade ago, RC transmitters were clunky, expensive and PCM. A decade before that, everything was analog. Now, RC transmitters are completely digital, allowing for hundreds of aircraft to take to the sky. They’re also cheap, thanks to engineers in China. Now, they’re open hardware, too.

An old Futaba radio outfitted with AR Uni electronics. Image source: vikar
An old Futaba radio outfitted with AR Uni electronics. Image source: vikar

An exceptionally long thread over on the RCGroups forums has been going on for a few months, extolling the virtues of the ‘AR Uni’ board that turns old transmitters into full featured digital radios. This board runs everything, from two analog sticks, a directional keyboard, pots galore, switches everywhere, and a fancy LCD that makes programming easy. The joys of Open Hardware, brought to RC geeks. It’s a thing of beauty. Continue reading “Open Hardware RC Radios”

Flying A Normally-Sized Drone With A Nano-Drone’s Brain

Drones come in all shapes and size, and [Kedar Nimbalkar] was wondering if the guts of a tiny Cheerson CX-10 nano-drone could take off with a larger body, leading to an interesting brain transplant experiment.

For his test, [Kedar] acquired a CX-10 and the body of a larger Syma X5SW drone. After gutting the CX-10 for its LiPo battery and circuit board, which features an STM32 ARM-core MCU, a 6-axis IMU and the wireless transmitter, [Kedar] studied the datasheet of the onboard SQ2310ES driver MOSFETs. He figured that with a maximum continuous current rating of 6A, they would probably be able to cope with the higher load of the slightly larger motors of the X5SW body. They also didn’t seem to overheat, so he just installed the board into the new body as-is and wired up the motors.

Continue reading “Flying A Normally-Sized Drone With A Nano-Drone’s Brain”