3D Printing With Plastic Cutlery

How many plastic spoons, knives, and forks do you think we throw away daily? [Stefan] noted that the compostable type is made from PLA, so why shouldn’t you be able to recycle it into 3D printing stock? How did it work? Check it out in the video below.

[Stefan] already has a nice setup for extruding filament. However, unsurprisingly, it won’t accept spoons and forks directly. A blender didn’t help, so he used an industrial plastic shredder. It reduced the utensils to what looked like coarse dust, which he then dried out. After running it through the extruder, the resulting filament was thin and brittle. [Stefan] speculates the plastic was set up for injection molding, but it at least showed the concept had merit.

In a second attempt, he cut the ground-up utensils with fresh PLA in equal measures. That is, 50% of the mix was recycled, and half was not. That made much more usable filament. So did a different brand of compostable plasticware.

The real test was to take dirty plasticware. This time, he soaked utensils in tomato sauce overnight. He cleaned, dried, and shredded the plastic. This time, he used 20% new PLA and some pigment, as well. We aren’t sure this is worth the effort simply on economics, but if you are committed to recycling, this might be worth your while.

It always seems like it should be easy to extrude filament. Until you try to do it, of course. Recycling plastic bottles is especially popular.

Continue reading “3D Printing With Plastic Cutlery”

Saving The Planet With Carefully Cut Paper

You may not think much of origami or its cousin-with-cutouts kirigami, but the latter could (and already is) helping to save the planet. But let’s back up a bit.

Most readers will be familiar with origami, the Japanese art of folding paper. But there is also kirigami, which uses a series of cuts to produce 3D shapes from 2D stock. Turns out that if you cut paper just right, you can turn it into highly-recyclable packaging that even interlocks with itself, negating the need for folding or even tape.

The video after the break takes a look at 3M’s Scotch Cushion Lockā„¢ protective wrap through the eyes of its inventor, Tom Corrigan. It all started when 3M wanted to create a self-assembling box from a flat piece of cardboard.

So far, that particular invention hasn’t come to fruition, but after many long nights with paper and X-Acto knives, Tom came up with a honeycomb design with strong vertical walls that absorb energy much like bubble wrap or packing peanuts. The toothiness of each honeycomb wall adds height which adds strength, and allows the packaging to interlock with itself.

Not only is this packaging easier to recycle, it takes up way less space than other packaging alternatives. Once expanded, a 1,000 square foot roll of this stuff is equal to 2,500 square feet of bubble wrap, which constitutes about a dozen rolls.

Now, what to do about all that expanded polystyrene packaging still out there? With the right tool, you can turn it into insulation.

Continue reading “Saving The Planet With Carefully Cut Paper”

A series of plates and tubes sits in a tank of water. The plates are square with what looks to be a white coating.

Desalinating Water With The Sun

Getting fresh water from salt water can be difficult to do at any kind of scale. Researchers have developed a new method of desalinating water that significantly reduces its cost. [via Electrek]

By mimicking the thermohaline circulation of the ocean, the researchers from MIT and Shanghai Jiao Tong University were able to solve one of the primary issues with desalination systems, salt fouling. Using a series of evaporator/condenser stages, the seawater is separated into freshwater and salt using heat from the sun.

Evaporating water to separate it from salt isn’t new, but the researchers took it a step further by tilting the whole contraption and introducing a series of tubes to help move the water along and create eddy currents. These currents help the denser, saltier water move off of the apparatus and down deeper into the fluid where the salt doesn’t cause an issue with the device’s operation. The device should have a relatively long lifetime since it has no moving parts and doesn’t require any electricity to operate.

The researchers believe a small, suitcase-sized device could produce water for a family for less than the cost of tap water in the US. The (paywalled) paper is available from Joule.

If you’re curious about other drinking water hacks, check out this post on Re-Imagining the Water Supply or this previous work by the same researchers.

Tesla’s Plug Moves Another Step Closer To Dominance

Charging an EV currently means making sure you find a station with the right plug. SAE International has now published what could be the end to the mishmash of standards in North America with the J3400 North American Charging Standard.

The SAE J3400TM North American Charging Standard (NACS) Electric Vehicle Coupler Technical Information Report (TIR), which just rolls off the tongue, details the standard formerly only available on Tesla vehicles. We previously talked about the avalanche of support from other automakers this year for the connector, and now that the independent SAE standard has come through, the only major holdout is Stellantis.

Among the advantages of the NACS standard over the Combined Charging System (CCS) or CHAdeMO is a smaller number of conductors given the plug’s ability to carry DC or AC over the same wires. Another benefit is the standard using 277 V which means that three separate Level 2 chargers can be placed on a single 3-phase commercial line with no additional step down required. Street parkers can also rejoice, as the standard includes provisions for lampost-based charger installations with a charge receptacle plug instead of the attached cable required by J1772 which leads to maintenance, clutter, and ADA concerns.

Now that J3400/NACS is no longer under the purview of a single company, the Federal Highway Administration has announced that it will be looking into amending the requirements for federal charger installation subsidies. Current rules require CCS plugs be part of the installation to qualify for funds from the Bipartisan Infrastructure Bill.

If you want to see how to spice up charging an EV at home, how about this charging robot or maybe try fast charging an e-bike from an electric car plug?

Recycling Batteries With Bacteria

Vehicle battery recycling is going to be a big deal with all the electric cars hitting the roads. What if you could do it more effectively with the power of microbes? (via Electrek)

“Li-ion” vehicle batteries can be any of a number of different chemistries, with more complex cathode makeups, like NCM (LiNixMnyCo1-x-yO2), being understandably more complex to separate into their original constituents. Researchers and companies in the industry are hoping to find economically-viable ways to get these metals back for both the environmental and economic benefits a closed loop system could provide.

Researchers in the UK developed a method using two species of bacteria to precipitate Ni, Mn, and Co from the liquid leached from cathodes. Li remained in the liquid where it could be processed separately like that obtained in Li brine. Mn was precipitated first by S. oneidensis MR-1, and a following step removed Ni and Co with D. alaskensis G20. The researchers report that Ni and Co show promise for further separation via biological methods, but more research is required for this step.

If you’re looking for some more interesting ways bacteria can be harnessed for the energy system, checkout this microbial fuel cell, another using soil, and an enzyme derived from bacteria that can pull electricity from thin air.

A white cargo van drives over a black asphalt road. An "x-ray" illustration shows the inductive coils inside the road as it drives over them.

Charging While Driving Now Possible In Michigan

Heavy vehicles like semi trucks pose a bigger challenge in electrifying the transportation fleet than smaller, more aerodynamic passenger cars. Michigan now has the first public in-road charging system in the United States to help alleviate this concern. [via Electrek]

Electreon, a company already active in Europe, won the contract to provide for the inductive coil-based charging system at the new Michigan Central Station research campus. Initial runs will be with a Ford E-Transit for testing, but there are plans to actually allow public use along the one mile (1.6 km) route in the near future.

Vehicles using the system need a special receiver, so we hope we’ll be seeing an open standard develop instead of having to have a different receiver for each road you drive on. This seems like it would be a more onerous swap than having to have three different toll road transponders. Unfortunately, the page about wireless standards on the Electreon website currently 404s, but CharIN, the standards body behind the Combined Charging Standard (CCS) did just launch a task force for wireless power delivery in September.

If you’re curious about other efforts at on-road charging, check out this slot car system in Sweden or another using pantographs.

 

An illustration of a powerplant, solar panel, and two wind turbines is in the bottom left across from an image of three cartoon people holding up a giant battery above their heads. Along the top of the image are the words, "Emergency Battery Network Toolkit." Below in a white bubble on the yellow background, it says, "How to share energy resources with your community in times of need." In the space between the people and the power plant, it says, "A Partnership of Shareable and People Power Battery Collective."

Sneakernet Power Transmission

Power outages in the face of natural disasters or more mundane grid failures can range from a mild inconvenience to a matter of life or death if you depend on electrical medical equipment. [Shareable] and [People Power Battery Collective] have partnered to develop a toolkit for communities looking to share power with each other in these situations.

Battery backup power isn’t exactly a new concept, so the real meat of this guide is how to build a network in your community so these relatively simple devices can be deployed effectively in the event of an emergency. We know that you can already handle your own backup power needs, but it pays to be a good neighbor, especially when those neighbors are deciding what to do when you’re releasing the factory-sealed smoke from your latest build on the community sidewalk.

For those who aren’t as technically-inclined as you, dear reader, there is also a handy Battery Basics (PDF) guide to help in selecting a battery backup solution. It is somewhat simplified, but it covers what most people would need to know. A note on fire safety regarding Li-ion batteries would probably be warranted in the Battery Basics document to balance the information on the risks of topping up lead-acid cells, but it otherwise seems pretty solid.

If you’re not quite ready to bug your neighbors, how about you build a backup battery first? How about repurposing an e-bike battery or this backup power solution for keeping a gas water heater working during a power outage?