All-Sky Camera Checks For Aurora

The aurora borealis (and its southern equivalent, the aurora australis) is a fleeting and somewhat rare phenomenon that produces vivid curtains of color in the sky at extreme latitudes. It’s a common tourist activity to travel to areas where the aurora is more prevalent in order to catch a glimpse of it. The best opportunities are in the winter though, and since most people don’t want to spend hours outside on a cold night night in high latitudes, an all-sky camera like this one from [Frank] can help notify its users when an aurora is happening.

Because of the extreme temperatures involved, this is a little more involved than simply pointing a camera at the sky and hoping for the best. The enclosure and all electronics need to be able to withstand -50°C and operate at at least -30. For the enclosure, [Frank] is going with PVC tubing with a clear dome glued into a top fits to the end of the pipe, providing a water-resistant enclosure. A Raspberry Pi with a wide-angle lens camera sits on a 3D printed carriage so it can easily slide inside. The electronics use power-over-ethernet (PoE) rather than a battery due to the temperature extremes, which conveniently provides networking capabilities for viewing the images.

This is only part one of this build — in part two [Frank] is planning to build a system which can use this camera assembly to detect the aurora automatically and send out notifications when it sees it. Watching the night sky from the comfort of a warm house or sauna isn’t the only reason for putting an all-sky camera to use, either. They can also be used to observe meteors as they fall and then triangulate the position of the meteorites on the ground.

A series of plates and tubes sits in a tank of water. The plates are square with what looks to be a white coating.

Desalinating Water With The Sun

Getting fresh water from salt water can be difficult to do at any kind of scale. Researchers have developed a new method of desalinating water that significantly reduces its cost. [via Electrek]

By mimicking the thermohaline circulation of the ocean, the researchers from MIT and Shanghai Jiao Tong University were able to solve one of the primary issues with desalination systems, salt fouling. Using a series of evaporator/condenser stages, the seawater is separated into freshwater and salt using heat from the sun.

Evaporating water to separate it from salt isn’t new, but the researchers took it a step further by tilting the whole contraption and introducing a series of tubes to help move the water along and create eddy currents. These currents help the denser, saltier water move off of the apparatus and down deeper into the fluid where the salt doesn’t cause an issue with the device’s operation. The device should have a relatively long lifetime since it has no moving parts and doesn’t require any electricity to operate.

The researchers believe a small, suitcase-sized device could produce water for a family for less than the cost of tap water in the US. The (paywalled) paper is available from Joule.

If you’re curious about other drinking water hacks, check out this post on Re-Imagining the Water Supply or this previous work by the same researchers.

Re-imagining The Water Supply

Getting freshwater supplied across cities and towns in a reliable and safe way is no simple task. Not only is a natural freshwater reservoir or other supply needed, but making sure the water is safe to drink and then shipping it out over a dense network of pumps and pipes can cost a surprising amount of time and money. It also hinges on a reliable power grid, which is something Texas resident [Suburban Biology] doesn’t have. But since fresh water literally falls out of the sky for free, he decided to take this matter into his own hands.

The main strategy with a system like this is to keep the rainwater as clean as possible before storage so that expensive treatment systems are less necessary. That means no asphalt shingles, a way to divert the first bit of rain that washes dust and other contaminants off the roof away, and a safe tank. This install uses a 30,000 gallon tank placed above ground for storage, but that’s not the only thing that goes into a big rainwater catchment system like this. A system of PVC pipes are needed both for sending rainwater from the roofs of the buildings into the tank and for pumping it into the home for use. With all of that in place it’s both a hedge against climate change, unstable electric grids, and even separates the user from the local aquifer which may or may not have its own major issues depending on where you live.

While Texas legally protects the rights of citizens to collect and store rainwater, the same isn’t true for all areas. For example, Colorado only just passed a law allowing the collection and storage of a meager 110 gallons of rainwater and forbade it entirely beforehand. There are some other considerations for a project like this too, largely that above-ground systems generally won’t work in cold climates. On the other hand, large systems like these are really only needed where rainfall is infrequent; in more tropical areas like south Florida a much smaller storage system can be used

Continue reading “Re-imagining The Water Supply”

A diagram showing an LED on the left, a lever-style plumbing valve in the center, and an Arduino Uno on the right.

Plumbing Valves As Heavy Duty Analog Inputs

Input devices that can handle rough and tumble environments aren’t nearly as varied as their more fragile siblings. [Alastair Aitchison] has devised a brilliant way of detecting inputs from plumbing valves that opens up another option. (YouTube) [via Arduino Blog]

While [Aitchison] could’ve run the plumbing valves with water inside and detected flow, he decided the more elegant solution would be to use photosensors and an LED to simplify the system. This avoids the added cost of a pump and flow sensors as well as the questionable proposition of mixing electronics and water. By analyzing the change in light intensity as the valve closes or opens, you can take input for a range of values or set a threshold for an on/off condition.

[Aitchison] designed these for an escape room, but we can see them being great for museums, amusement parks, or even for (train) simulators. He says one of the main reasons he picked plumbing valves was for their aesthetics. Industrial switches and arcade buttons have their place, but certainly aren’t the best fit in some situations, especially if you’re going for a period feel. Plus, since the sensor itself doesn’t have any moving parts, these analog inputs will be easy to repair should anything happen to the valve itself.

If you’re looking for more unusual inputs, check out the winners of our Odd Inputs and Peculiar Peripherals contest or this typewriter that runs Linux.

Continue reading “Plumbing Valves As Heavy Duty Analog Inputs”

Custom Controller Ups Heat Pump Efficiency

Heat Pumps are an extremely efficient way to maintain climate control in a building. Unlike traditional air conditioners, heat pumps can also effectively work in reverse to warm a home in winter as well as cool it in summer; with up to five times the efficiency of energy use as a traditional electric heater. Even with those tremendous gains in performance, there are still some ways to improve on them as [Martin] shows us with some modifications he made to his heat pump system.

This specific heat pump is being employed not for climate control but for water heating, which sees similar improvements in efficiency over a standard water heater. The problem with [Martin]’s was that even then it was simply running much too often. After sleuthing the energy losses and trying a number of things including a one-way valve on the heating water plumbing to prevent siphoning, he eventually found that the heat pump was ramping up to maximum temperature once per day even if the water tank was already hot. By building a custom master controller for the heat pump which includes some timing relays, the heat pump only runs up to its maximum temperature once per week.

While there are some concerns with Legionnaire’s bacteria if the system is not maintained properly, this modification still meets all of Australia’s stringent building code requirements. His build is more of an investigative journey into a more complex piece of machinery, and his efforts net him a max energy usage of around 1 kWh per day which is 50% more efficient than it was when it was first installed. If you’re looking to investigate more into heat pumps, take a look at this DIY Arduino-controlled mini heat pump.

Continue reading “Custom Controller Ups Heat Pump Efficiency”

Portable Pizza Oven Has Temperature Level Over 900

While it’s possible to make pizza from scratch at home right down to the dough itself, it’ll be a struggle to replicate the taste and exquisite mouthfeel without a pizza oven. Pizzas cook best at temperatures well over the 260°C/500°F limit on most household ovens while pizza ovens can typically get much hotter than that. Most of us won’t have the resources to put a commercial grade wood-fired brick oven in our homes, but the next best thing is this portable pizza oven from [Andrew W].

The build starts with some sheet metal to form the outer and inner covers for the oven. [Andrew] has found with some testing that a curved shape seems to produce the best results, so the sheet metal goes through rollers to get its shape before being welded together. With the oven’s rough shape completed, he fabricates two different burners. One sits at the back of the oven with its own diffuser to keep the oven as hot as possible and the other sits underneath a cordierite stone to heat from the bottom. Both are fed gas from custom copper plumbing and when it fires up it reaches temperatures hot enough that it can cook a pizza in just a few minutes. With some foldable legs the oven also ends up being fairly portable, and its small size means that it can heat up faster than a conventional oven too.

This is [Andrew]’s third prototype oven, and it seems like he has the recipe perfected. In fact, we featured one of his previous versions almost two years ago and are excited to see the progress he’s made in this build. The only downside to having something like this would be the potential health implications of always being able to make delicious pizzas, but that is a risk we’d be willing to take.

Continue reading “Portable Pizza Oven Has Temperature Level Over 900”

The Miracle Of Injection Molding: How Does It Work?

Pretty much any household item nowadays has an involved, extremely well-thought-out manufacturing method to it, whether it’s a sheet of paper, an electrical outlet, a can of tuna, or even the house itself. Some of the stories of how these objects came to be are compelling, though, as one of the recent videos from [This Old Tony] shows as he takes a deep dive into a $5 ball valve, and uses it to talk about all of the cool things you can do with injection molding.

Injection molding is the process of casting molten plastic into more useful pieces of plastic. In this case it’s a plumbing valve which might seem simple on the surface, but turns out to be much more involved. These ball valves are extremely reliable but have a very small price tag, meaning that a lot of engineering must have gone into their design. What is unearthed in the video is that injection molding allows parts to be cast into the molds of other parts, and the means by which those parts don’t all melt together, and how seals can be created within the part itself. All of this happens with a minimal number of parts and zero interaction from a human, or from any robot that isn’t the injection mold itself.

The video goes into exceptional detail on these valves specifically but also expounds on various techniques in injection molding. Similar to the recognition the seemingly modest aluminum can deserves, the injection molded ball valve deserves a similar amount of respect. While [This Old Tony] usually focuses on metalworking, he often tackles other interesting topics like this and this video is definitely worth checking out.

Continue reading “The Miracle Of Injection Molding: How Does It Work?”