Laser Etched Surface Redefines Dry

Just the other day we stood in the kitchen making eggs, staring suspiciously at a long scratch carved in the center of the frying pan. With all the articles passing through social media prompting us to be wary of things in our environment that are supposedly killing us, Teflon included, I wondered to myself if humans would ever start coming up with solutions to daily problems… like sticky eggs, which don’t involve the use of complex chemicals. Alas, the universe responds with uncanny timing. A group of researchers led by [Chunlei Guo] from Rochester University’s Institute of Optics has recently published their development of a surface textured by lasers which repels fluid like a rubber ball… without any chemical treating involved. You really need to see this happen in the video below.

This physical magic trick gets its inspiration from nature, mimicking properties of surface tension from living things that repel water such as lotus leaves or butterfly wings. To achieve a similar effect, a precision laser is used to etch nanoscale patterns onto metal which change the surface properties in such a way that fluid molecules prefer not to stick. The benefit to texturizing a material’s surface as opposed to glazing it in some other repellant, is that the pattern becomes intrinsically part of the surface structure and will not fade over time the way a chemical seal will chip or flake. This hydrophobic technology could improve the way we keep surfaces sanitary as well as lend itself to new methods of frost prevention. Not to mention the dozens of other less important applications that we’ve just thought of for our own amusement.

In addition to creating the hydrophobic surface, the Institute of Optic has employed similar tactics to come up with a material capable of absorbing fluid and carrying it upward swiftly against gravity. With the knowledge of physics and the power of lasers combined, we’re glad to see humans coming up with smarter ways to manipulate the world we live in for a more comfortable daily life.

Continue reading “Laser Etched Surface Redefines Dry”

Spliced Animations come to life on their pages

Remember those flipbooks you doodled into your history textbooks while you waited for the lunch bell? [Maric] takes the general principles of flipbooks and turns them on their head, giving our brain a whirl in the process. By splicing multiple frames into one image, he can bring animations to life onto a single page.

The technique is simple, but yields impressive results. By overlaying a pattern of vertical black bars onto his image, only a small fraction of the image is visible at any given point. The gaps in the pattern belong to a single frame from the animation. As [Maric] slides the pattern over the image, subsequent frames are revealed to our eyes, and our brain fills in the rest.

A closer look reveals more detail about the constraints imposed on these animations. In this case, the number of frames per animation loop is given by the widths in the transparency pattern. Specifically, it is the number of transparent slits that could fit, side-by-side, within an adjacent black rectangle.

The trick that makes this demonstration work so nicely is that the animated clips finish where they start, resulting in a clean, continuous illusion.

Don’t believe what you see? [Maric] has linked the pattern and images on his video so you can try them for yourself. Give them a go, and let us know what you think in the comments.

Continue reading “Spliced Animations come to life on their pages”

[Tesla500] Builds a High-Speed Video Camera

[Tesla500] has a passion for high-speed photography. Unfortunately, costs for high-speed video cameras like the Phantom Flex run into the tens or even hundreds of thousands of dollars. When tools are too expensive, you do the only thing you can – you build your own! [Tesla500’s] HSC768 is named for the data transfer rate of its image sensor. 768 megapixels per second translates to about 960MB/s due to the 10 bit pixel format used by the On Semiconductor Lupa1300-2 image sensor.

This is actually [Tesla500’s] second high-speed camera, the first was HSC80, based upon the much slower Lupa300 sensor. HSC80 did work, but it was tied to an FPGA devboard and controlled by a PC. [Tesla500’s] experience really shows in this second effort, as HSC768 is a complete portable system running Linux with a QT based GUI and a touchscreen. A 3D printed case gives the camera that familiar DSLR/MILC  shape we’ve all come to know and love.

The processor is a Texas Instruments TMS320DM8148 DaVinci, running TI’s customized build of Linux. The DaVinci controls most of the mundane things like the GUI, trigger I/O, SD card and SATA interfaces. The real magic is the high-speed image acquisition, which is all handled by the FPGA. High-speed image acquisition demands high-speed memory, and a lot of it! Thankfully, desktop computers have given us large, high-speed DDR3 ram modules. However, when it came time to design the camera, [Tesla500] found that neither Xilinx nor Altera had a FPGA under $1000 USD with DDR3 module support. Sure, they will support individual DDR3 chips, but costs are much higher when dealing with chips. Lattice did have a low-cost FPGA with the features [Tesla500] needed, so a Lattice ECP3 series chip went into the camera.

The final result looks well worth all the effort [Tesla500] has put into this project. The HSC768 is capable of taking SXGA (1280×1024) videos at 500 frames per second, or 800×600 gray·scale images at the 1200 frames per second. Lower resolutions allow for even higher frame rates.  [Tesla500] has even used the camera to analyze a strange air oscillation he was having in his pneumatic hand dryer.  Click past the break for an overview video of the camera, and the hand dryer video. Both contain some stunning high-speed sequences!

Continue reading “[Tesla500] Builds a High-Speed Video Camera”

Animate Your Artichoke with a Lathe and Camera

Spirals, fractals, and even bone length proportions whisper of a consistent ratio woven into the universe. Math is hidden in the fabric of things, and when this fact is observed in art, magic happens. Professor, artist, and inventor [John Edmark] draws inspiration from geometric patterns found in nature and builds sculptures using the golden ratio as a standard for design. In this project, he expresses these characteristics through animated biomorphic zoetropes.

goldenratio2[John] modeled several 3D sculptures in Rhino containing similar geometric properties to those found in pinecones and palm tree fronds. As the segments grow from those objects in nature, they do so in approximately 137.5 degree intervals. This spacing produces a particular spiral appearance which [John] was aiming to recreate. To do so, he used a Python script which calculated a web of quads stretched over the surface of a sphere. From each of the divisions, stalk-like protrusions extend from the top center outward. Once these figures were 3D printed, they were mounted one at a time to the center of a spinning base and set to rotate at 550 RPM. A camera then films the shape as it’s in motion at a 1/2000 sec frame rate which captures stills of the object in just the right set of positions to produce the illusion that the tendrils are blooming from the top and pouring down the sides. The same effect could also be achieved with a strobe light instead of a camera.

[John] has more information on his instructables page. He also provides a video of this trick working with an actual artichoke; one of the living examples of the golden ratio which this project was inspired by. Thank you, [Charlie Nordstrom] for helping him document these awesome sculptures and for telling us about them!

Continue reading “Animate Your Artichoke with a Lathe and Camera”

Myst Linking Book

[Daniel] was looking for a special gift to make for his close friend. His friend is a huge fan of the Myst franchise which made the decision easy — why not make a Myst Linking Book?

After doing some research he discovered that the book in the game footage was a Harper’s New Monthly Magazine, Volume LIV, Issue 312 from 1877. He attempted to find one on eBay but they were pretty expensive — and in pretty rough shape. So instead he settled on a copy of Scribner’s Monthly Magazine,Volume XL, Nov 1875 to Apr 1876. Not quite identical but close enough!

His original plan was to embed a Raspberry Pi with an LCD screen to show off the Myst videos, but then discovered the cheap and easy to use video greeting card modules, which you can pick up for $10-20 from China. They typically let you store about five videos and use a magnetic reed switch to activate — almost like it was designed for this project!

Continue reading “Myst Linking Book”

How Many Puffs Does it Take To Kill an E-Cigarette?

Most of us have probably heard the old Tootsie Pop slogan, “How many licks does it take to get to the center of a Tootsie Pop?” [E-Smoker2014] had a similar question about his e-cigarettes. These devices are sometimes advertised with the number of puffs they are good for. [E-Smoker2014] had purchased an e-cigarette on a trip to Belgium that advertised 500 puffs. After a bit of use, he started to suspect that he wasn’t getting the advertised number of puffs in before the battery would die. Rather than just accept that the world may never know for sure, he decided to test it out himself.

There aren’t many details on this build, but you can tell what’s going on from the video below. [E-Smoke2014r] built a machine to artificially puff on an e-cigarette. The e-cigarette is hooked up to what appears to be vinyl tubing. This tubing then attaches to a T-splitter. One end of the splitter is hooked up to a DIY actuator valve that can open or close the port. The other end of the splitter is hooked up to more tubing, which in turn is attached to a plastic cylinder placed in a container of water.

To simulate breathing, the computer first opens the relief valve in the splitter. It then mechanically lowers the plastic container into the bowl of water, pushing out a bunch of air in the process. The valve closes, and the computer then raises the plastic container out of the water. This action creates suction that draws air in through the e-cigarette like a normal user would do with their lungs. The computer increases the puff count and then repeats the process, expelling any vapor out of the relief valve.

The results of the test indicated that [E-Smoker] could only get 59 puffs out of this particular e-cigarette before draining the battery. Not even close to the advertised 500 puffs. Maybe he should consider building his own e-cigarette vaporizer? Continue reading “How Many Puffs Does it Take To Kill an E-Cigarette?”

R/C Wheel Loader Clears Snow, Lifts People

For some people, R/C cars just aren’t enough. [djMedic2008] has gotten his hands on a monstrous 1/5 scale wheel loader. The loader weighs in at 500lbs, and can lift up to 250 lbs. It was built several years ago as a prototype by [Richard] at Tiny Titan Earth Movers.

The design is based upon huge machines made by companies like Caterpillar and Komatsu. The 4WD system is driven a DC motor through a worm gear reduction. Bucket operation and steering are both operated by a hydraulic system driven by an electric pump. Just like the full-scale machines, the mini loader uses an articulated steering system. The front wheels are locked in place while the entire chassis bends at the middle pivot point. This allows for a much stronger solid front axle.

loader-gearAfter several years of hard life, the loader came to [djMedic] in need of some TLC. The biggest issue was that the rear axle bevel gear had lost several teeth. This gear is under enormous loads when the loader is turning. A gear made of harder steel was the easy answer. Thankfully, you can order high carbon steel bevel gears from Amazon. The repair video gives us a look at the design of the loader. The main components of the machine are welded up from steel sheet and tube stock. This means that [djMedic] won’t have a hard time finding spare parts for his machine once he puts it to work clearing snow, dirt, or anything else that gets in its way!

Click past the break to see the loader in action!

Continue reading “R/C Wheel Loader Clears Snow, Lifts People”