Taming A Variac With A Thermistor

The folks at TOG, Dublin Hackerspace, have a large variac. A variac is a useful device for testing some fault conditions with AC mains powered equipment, it allows an operator to dial in any AC output voltage between zero, and in the case of TOG’s variac, 250V.

Their problem was with such a magnificent device capable of handling nearly 3KW, it presented an inductive load with a huge inrush current at power-on that would always take out the circuit breakers. Breakers come with different surge current handling capabilities, evidently their building is fitted with the domestic rather than the industrial variants.

Their solution was a simple one, they fitted an NTC surge limiter in series with the variac input. This is a thermistor whose resistance falls with temperature. Thus on start-up it presented an extra 12 ohm load which was enough to keep the breaker happy, but soon dropped to a resistance which left the variac with enough juice.

This is a simple fix to a problem that has faced more than one hackerspace whose imperfect lodgings are wired to domestic-grade spec. In a way it ties in neatly with our recent feature on mains safety; making the transformer no longer a pain to use means that it is more likely to be used when it is needed.

Via: TOG, Dublin Hackerspace.

The Ultimate Traveler’s Toolkit

Looking for a better way to store your tools during transportation? While we certainly wouldn’t recommend trying to check this thing as a carry-on (oh and prepare for it to be searched even in checked luggage), this clever use of a road case is probably one of the best tool boxes we’ve ever seen.

This is [Robb Godshaw’s] tool box. It’s been developed over the past five years as he’s become a skilled maker. You might remember him best from his ironic project “Why are we limited to C-Clamps?” — a clamp offering of the entire alphabet.

He also picked up the road case close to home for Hackaday — at Apex Electronics Surplus in LA — one of our favorite places to find parts. But the most clever part of the project is the way he’s divided the case for different tools.

Continue reading “The Ultimate Traveler’s Toolkit”

Tools of the Trade – Component Placing

Recently we started a series on the components used to assemble a circuit board. The first issue was on dispensing solder paste. Moving down the assembly line, with the paste already on the board, the next step is getting the components onto the PCB. We’re just going to address SMT components in this issue, because the through hole assembly doesn’t take place until after the SMT components have gone through the process to affix them to the board.

Reels!
Reels!

SMT components will come in reels. These reels are paper or plastic with a clear plastic strip on top, and a reel typically has a few thousand components on it. Economies of scale really kick in with reels, especially passives. If you order SMT resistors in quantities of 1-10, they’re usually $.10 each. If you order a reel of 5000, it’s usually about $5 for the reel. It is cheaper to purchase a reel of 10 kOhm 0603 resistors and never have to order them again in your life than it is to order a few at a time. Plus the reel can be used on many pick-and-place machines, but the cut tape is often too short to use in automated processes.

Continue reading “Tools of the Trade – Component Placing”

An Affordable Ultrasonic Soldering Iron

One of the most interesting facets of our community of hackers and makers comes from its never-ending capacity to experiment and to deliver new technologies and techniques. Ample demonstration of this came this morning, in the form of [Hunter Scott]’s Hackaday.io project to create an ultrasonic soldering iron. This is a soldering technique in which the iron is subjected to ultrasonic vibrations which cavitate the surface of the materials to be soldered and remove any oxides which would impede the adhesion of the solder. In this way normally unsolderable materials such as stainless steel, aluminium, ceramic, or glass can be soldered without the need for flux or other specialist chemicals. Ultrasonic soldering has been an expensive business, and [Hunter]’s project aims to change that.

This iron takes the element and tip from a conventional mains-powered soldering iron and mounts it on the transducer from an ultrasonic cleaner. The transducer must be given an appropriate load which in the case of the cleaner is furnished by a water bath, or it will overheat and burn out. [Hunter]’s load is just a soldering iron element, so to prevent transducer meltdown he keeps the element powered continuously but the transducer on a momentary-action switch to ensure it only runs for the short time he’s soldering. The project is not quite finished so he’s yet to prove whether this approach will save his transducer, but we feel it’s an interesting enough idea to make it definitely worth following.

This is the first ultrasonic soldering project we’ve featured here at Hackaday. We have however had an ultrasonic plastic welder before, and an ultrasonic vapour polisher for 3D prints. It would be good to think this project could spark a raft of others that improve and refine DIY ultrasonic soldering designs.

Hackaday Prize Entry: A Cheaper Soldering Solution

Everyone goes through a few phases during their exploration of electrons, and nowhere is this more apparent than the choice of soldering iron. The My First Soldering Iron™ is an iron that plugs directly into the wall, and doesn’t have temperature control. They’re cheap, and electronics isn’t for everyone, giving the quitters the opportunity to take up woodburning as a hobby. The next step up is a temperature controlled iron, probably an Aoyue or Hakko. The best soldering iron? You’re looking at a Metcal or Weller, and your wallet will become a few hundred dollars lighter.

Your My First Soldering Iron™ need not be terrible, though. For his project for The Hackaday Prize, [HP] is working on a soldering iron that is cheap, accurate, and uses the very nice Weller RT tips. No, it’s not as good as a Metcal or proper Weller, but it’s good enough for some fine soldering work and will give the Aoyues and Hakkos a run for their money.

If price is a reasonable measure of the quality of a soldering iron, the irons that use these Weller RT tips are the best irons around. The tips, though, are pretty cheap: about $30, which gets you a heater and thermistor and not much else. There have been numerous reverse engineering efforts for this iron ([1] and [2]), and even a few Arduino-based circuits that replicate the functionality of the Weller base unit.

[HP] is going in a different direction to heat these iron tips. Instead of building a big box to hold the electronics, he’s building everything into the handle of the soldering iron. With brains donated from an ATMega168, a few op-amps, MOSFETS, and a single power jack, [HP] can heat up this soldering iron tip in a compact, hand-held unit.

For his Hackaday Prize entry, [HP] did a rundown of soldering pen in a video. You can check that out below.

Continue reading “Hackaday Prize Entry: A Cheaper Soldering Solution”

Designing Flat Flexible PCBs

You can find flex PCBs in just about every single piece of consumer electronics. These traces of copper laminated in sheets of Kapton are everywhere, and designing these cables, let alone manufacturing them, is a dark art for the garage electronics wizard. Having these flat flex cables and PCBs manufactured still requires some Google-fu or a contact at a fab house, but at least now designing these cables is a solved problem.

[Oli] needed a way to connect two PCBs together over a moving part. Usually this means some sort of connector or cable, but he’s developed an even better solution – flexible PCB connections. To generate these copper traces sandwiched between a few layers of Kapton, [Oli] wrote a Python script to take a set of parameters, and produces an design for Eagle that includes all the relevant bits.

Of course, with a flexible PCB layout, the question of how to get these manufactured comes up. we’ve seen a few creative people make flexible PCBs with a 3D printer and there’s been more than one Hackaday Prize project using these flex PCBs. [Oli] says any manufacturer of flexible circuits should be able to reproduce everything generated from his script without much thinking at all. All we need now is for OSH Park to invent purple Kapton.

You can grab [Oli]’s script on his GitHub.

Engineering Meets Craftsmanship in this Guitar Fretting Jig

178-440Cutting the slots in a guitar’s neck for the frets requires special tooling, and [Gord]’s contribution to his friend’s recent dive into lutherie was this lovingly engineered and crafted fret mitering jig. We’d love to have a friend like [Gord].

We’ve covered a number of [Gord]’s builds before, and craftsmanship is the first thing that comes to mind whether the project is a man-cave clock or artisanal soaps. For this build, he stepped up the quality a notch – after all, if you’re going to build something you could buy for less than $200, you might as well make it a thing to behold.

There’s plenty to feast the eyes on here – an oak bed with custom logo, the aluminum jig body with brass accents, and the precision bearings that guide the pricey backsaw. Functionality abounds too – everything is adjustable, from the depth of cut to the width of the saw blade. There’s even a place to store the adjustment tool.

The result? Well, let’s just say that [Gord] and his friend [Fabrizio] are kindred spirits in the craftsmanship department. And [Fab]’s not a bad axeman either, as the video below shows.

Continue reading “Engineering Meets Craftsmanship in this Guitar Fretting Jig”