The Ninja Run: a VR Movement Experiment

VR is an area that is seeing plenty of DIY experimentation, and [FultonX] has an interesting hack of sorts in that he’s discovered something that meshes well with how we perceive motion and movement. It’s an experimental movement system for VR he calls the Ninja Run, and it somewhat resembles skiing.

ninja-run-analysis-optimizedEven room-scale VR suffers from the fact that the player is more or less stuck in one place. Moving the player from one spot to another isn’t currently a gracefully solved problem, and many existing methods are not immersive or have other drawbacks. One solution in use is a sort of teleportation, another “slides” the player to another area on command (like gliding across ice). [FultonX] found these existing solutions lacking, and prototyped the Ninja Run concept which he found was surprisingly intuitive and effective. Video demo embedded below.

Continue reading “The Ninja Run: a VR Movement Experiment”

Hacking Google Daydream to work with iOS

The Google Daydream is a VR headset with a controller, and according to the folks at Google, “It’s not currently compatible with iOS and won’t be for several years probably.” OK.

This inspired [Matteo Pisani] to get to work on the protocol that it uses to speak with Android phones. Cutting to the chase, he got it working in several days.

There really wasn’t all that much to it. The controller sends data over Bluetooth, and [Matteo] noticed an “unknown” device on the network. Looking inside the data that it sent, it changed when he moved the controller. Not so unknown now! The rest of the work consisted of writing applications to test hypotheses, waving the controller around, and finding out if he was right. Read up if you’re interested in implementing this yourself.

We love protocol hacks here. From running quadcopters on your own remotes, to simply trying to turn on a lightbulb, it’s getting more and more important that we understand the various languages that our devices speak.

Revealed: Homebrew Controller Working in Steam VR

[Florian] has been putting a lot of work into VR controllers that can be used without interfering with a regular mouse + keyboard combination, and his most recent work has opened the door to successfully emulating a Vive VR controller in Steam VR. He uses Arduino-based custom hardware on the hand, a Leap Motion controller, and fuses the data in software.

We’ve seen [Florian]’s work before in successfully combining a Leap Motion with additional hardware sensors. The idea is to compensate for the fact that the Leap Motion sensor is not very good at detecting some types of movement, such as tilting a fist towards or away from yourself — a movement similar to aiming a gun up or down. At the same time, an important goal is for any added hardware to leave fingers and hands free.

Continue reading “Revealed: Homebrew Controller Working in Steam VR”

[CNLohr] Reverses Vive, Valve Engineers Play Along

[CNLohr] needs no introduction around these parts. He’s pulled off a few really epic hacks. Recently, he’s set his sights on writing a simple, easy to extend library to work with the HTC Vive VR controller equipment, and in particular the Watchman controller.

There’s been a lot of previous work on the device, so [Charles] wasn’t starting from scratch, and he live-streamed his work, allowing others to play along. In the process, two engineers who actually worked on the hardware in question, [Alan Yates] and [Ben Jackson], stopped by and gave some oblique hints and “warmer-cooler” guidance. A much-condensed version is up on YouTube (and embedded below). In the links, you’ll find code and the live streams in their original glory, if you want to see what went down blow by blow. Code and more docs are in this Gist.

Continue reading “[CNLohr] Reverses Vive, Valve Engineers Play Along”

Archaeology, Virtually.

Drone technology is seeing useful application in a new field seemingly every day — so it was only a matter of time before it saw use in archaeology. And so, a team of researches in Australia are combining drone and VR modeling technology to help investigate the Plain of Jars, in Laos.

After the drone images the site, those photos are patched together by object recognition software and are reviewed in the immersive CAVE2 3D facility at Melbourne, Australia’s Monash University. Multiple surveys catalog and archive the dig at various stages and enable the archaeologists to continue investigating the site after leaving — especially useful for digs in dangerous regions. In this case, the landscape around the Plain of Jars is dotted with unexploded cluster bomblets.

Continue reading “Archaeology, Virtually.”

VR Feels More Real with Leap Motion and This Rotation Sensor

You could have said this at any time in the last couple of decades: the world of virtual reality peripherals does not yet feel as though it has fulfilled its potential. From the Amiga-powered Virtuality headsets and nausea-inducing Nintendo Virtual Boy of the 1990s to today’s crop of advanced headsets and peripherals, there has always been a sense that we’re not quite there yet. Moments at which the shortcomings of the hardware intrude into the virtual world may be less frequent with the latest products, but still the goal of virtual world immersion seems elusive at times.

One of the more interesting peripherals on the market today is the Leap Motion controller. This is a USB device containing infra-red illumination and cameras which provide enough resolution for its software to accurately calculate the position of a user’s hands and fingers in three-dimensional space. This ability to track finger movement gives it the function of a controller for really complex interactions with and manipulations of objects in virtual worlds.

Even the Leap Motion has its shortcomings though, moments at which it ceases to be able to track. Rotating your hand, as you might for instance when aiming a virtual in-game weapon, confuses it. This led [Florian Maurer] to seek his own solution, and he’s come up with a hand peripheral containing a rotation sensor.

Inspired by a movie prop from the film Ender’s Game, it is a 3D-printed device that clips onto the palm of his hand between thumb and index finger. It contains both an Arduino Pro Micro and a bno055 rotation sensor, plus a couple of buttons for in-game actions such as triggers. It solves the problem with the Leap Motion’s rotation detection, and does not impede hand movement so much that he can’t also use his keyboard and mouse while wearing it. Sadly he does not yet seem to have posted any code, but he does treat us to a video demonstration which we’ve posted below the break.

Continue reading “VR Feels More Real with Leap Motion and This Rotation Sensor”

Making VR A Little More Usable With A Pinch Gesture Ring

[Florian] wants to browse the web like an internet cowboy from a cyberpunk novel. Unfortunately, VR controllers are great for games but really incapacitate a hand for typing. A new input method was needed, one that would free his fingers for typing, but still give his hands detailed input into the virtual world.

Since VR goggles have… hopefully… already reached peak ridiculousness, his first idea was to glue a Leap Motion controller to the front of it. It couldn’t look any sillier after all.  The Leap controller was designed to track hands, and when combined with the IMU built into the VR contraption, did a pretty good job of putting his hands into the world. Unfortunately, the primary gesture used for a “click” was only registering 80% of the time.

The gesture in question is a pinching motion, pushing the thumb and middle finger together. He couldn’t involve a big button without incapacitating his hands for typing. It took a few iterations, but he arrived at a compact ring design with a momentary switch on it. This is connected to an Arduino on his wrist, but was out of the way enough to allow him to type.

It’s yet another development marching us to usable VR. We personally can’t wait until we can use some technology straight out of  Stephenson or Gibson novel.