Etching PCBs With A 3D Printer

There are dozens of circuit board printers out there that lay down traces of conductive ink and ask you to glue down components to a fragile circuit board. This is a far cry from the old way of making PCBs, but these printers are going gangbusters, cashing in on the recent popularity of hardware startups and rapid prototyping.

People who think deeply about a problem are few and far between, but lucky for us [Arvid] is one of them. He’s come up with a way of creating PCBs with any 3D printer and steel rod. The results are better than anything you could make with a circuit board printer, and the technique is very, very cheap.

[Arvid] is using the traditional method of etching away copper, just some ferric chloride and a bit of time. How he’s masking the copper that shouldn’t be etched away is a unique process we haven’t seen before. He’s simply covering a piece of copper clad board with permanent marker, and scribing the parts he wants to be etched with a sharp steel rod attached to a 3D printer.

The G code for the printer was generated by FlatCAM, a piece of software made specifically for cutting PCBs with a mill. [Arvid]’s technique works so well that spindles and mills aren’t needed; only a sufficiently sharp instrument to scrape away permanent marker.

Thanks [Hassi] for sending this one in.

MapleMaker 3D Printer is As Printable as They Get

The term RepRap is fairly common and gets thrown around too often when generally talking about DIY 3D Printers. We must remember that the intent of the RepRap project “…is about making self-replicating machines…” and of course “…making them freely available for the benefit of everyone…“.

[MiniMadRyan] has recently designed a printer that could be considered the embodiment of the RepRap philosophy. He’s calling it the MapleMaker Mini V2. An extremely high percentage of the parts required to build this printer are, in fact, printable themselves. The frame pieces are printed, all of which can be printed on the printer thanks to the 6x8x6 inches print volume. The overall design is aesthetically pleasing, resembling that of a Lulzbot Mini.

The MapleMaker Mini V2 is self-replicating. The other part of the RepRap goal is to be free to the community. The design files are available on YouMagine and the assembly manual is better than those provided by most commercial companies. So if you’re looking to build a printer, be sure to add this one to your short list!

 

Color Light Painting With A 3D Printer

Light painting, or taking a few RGB LEDs, a camera with a long exposure, and turning the world into Tron, has been around for a while. We haven’t seen many people using their household CNC machines for the same effect. [ekaggrat] is the exception. He’s already used a 3D printer to do some light painting, and now he’s doing it in color.

This build is an extension of an earlier project we saw that used a white LED to draw pictures within the build volume of a delta printer. Just like the last time, [ekaggrat] wired LEDs up to a RAMPS board and toggled pins with the M42 command. This build merely triples the complexity of the wiring; the RGB LED is wired to pins 4,5, and 6 of the controller board, and the shutter release button of his camera is wired up to pin 11 with an optoisolator.

The ability to blink out Gcode is one thing, getting his two-year-old daughter to stand still for 3D scanning is another thing entirely. With the data in hand, [ekaggrat] was able to run this model through a script that would generate a light painting of his daughter. You can grab the script for that on GitHub, or check out the video below.

Continue reading “Color Light Painting With A 3D Printer”

Delta 3D Printer Made From Unorthodox Parts

Over here at Hackaday, we love stuff made from other (unrelated) stuff. Maybe it’s the ingenuity behind the build or the recycling of parts… or it could be both. Either way, it’s cool and a side benefit of re-using parts from the junk drawer is that it keeps the project cost down, maybe enough that the project wouldn’t even be feasible without the re-use of parts.

That brings us to the topic of this post, a Delta-style 3D Printer made from recycled parts not typically seen in such a machine. It was built by DIYer [hesamh] and is almost unrecognizable visually. The usual extruded aluminum or precision shaft frame has been replaced with 5 pieces of MDF, finger-jointed together at the seams. Attached to the 3 vertical MDF frame pieces are rail and carriage assemblies scavenged from Epson dot matrix prints saved from the scrap yard. The best part is that these rail/carriage assemblies already had stepper motors and belts installed!

The end effector is also unique among delta-style printers. This one is made from aluminum plate and provides a mount for the extruder. There is no need for a bowden tube setup when the extruder is mounted on the end effector, although the increase in mass may reduce the printer’s top speed. That’s fine by us as we’d rather have a good-looking slow print than a fast ball of spaghetti. Another scavenged stepper motor is used for the extruder. The accompanying belt pulley acts as a direct drive feed gear.

The print bed is a re-purposed flatbed scanner. The guts were removed and a heating element was placed under the glass. The bed heater is controlled separately by way of a household thermostat. An Arduino Leonardo and 4 stepper drivers replace the normally used Mega/RAMPS/Pololu combo. Overall, this is a cool build that shows what is possible with a little thought and resourcefulness. The only part used in this build that was actually made for use in a 3D Printer is the hotend!

Prevent Failed Prints With A Filament Speed Sensor

If you have used a 3D printer for any length of time, you’ve probably experienced a failed print caused by a clogged nozzle. If you’re not around to stop the print and the nozzle stays hot and full of filament for hours, the clog gets even worse. [Florian] set out to solve this issue with an encoder that measures filament speed, which acts as an early warning system for nozzle clogs.

static1.squarespace.com[Florian] designed a small assembly with a wheel and encoder that measures filament movement. The filament passes under the encoder wheel before it’s fed into the 3D printer. The encoder is hooked up to an Arduino which measures the Gray code pulses as the encoder rotates, and the encoder count is streamed over the serial port to a computer.

When the filament slows down or stops due to a nozzle clog, the Python script plays a notification sound to let you know that you should check your nozzle and that your print might fail. Once [Florian] works out some of the kinks in his setup, it would be awesome if the script could stop the print when the nozzle fails. Have any other ideas on how to detect print failures? Let us know in the comments.

We Have A Problem: 3D Printers Are Too Expensive

Hackaday, we have a problem. 3D printing is changing the world but it’s still too expensive to be embraced as a truly transformative technology.

With each passing year, the 3D printing industry grows by leaps and bounds. Food safe PLA is now the norm, with dissolvable and other exotic filaments becoming more mainstream.  New filaments are making it possible to print objects that were not possible before. New CAD software is popping up like dandelions, with each iteration giving novice users a friendly and more intuitive interface to design 3D models. As time marches on, and we look into its future, a vision of the 3D printing world is evident – its only going to get bigger.

3d printerImagine a future where a 3D printer is as common as an ink jet printer in homes all across the world.  A future where you could buy filament from the supermarket down the street, and pick up a new printer from any hardware store. A future where dishwashers, refrigerators and bicycles come with .stl files that allow you to print upgrades or spare parts. A future where companies compete to give the market easy-to-use printers at the cheapest price.

Is this future possible? Not until the technology changes. It’s too expensive, and that’s the problem you’re going to solve. How can you make a 3D printer cheaper? A cheap printer could change the game and make our future a reality.

Where do we need cost savings?

To get you going, here are some parts of common 3D Printers which think need to find cost-saving solutions.

XYZ AND HOT END MOTORS

Stepper motors are going to run you about $15 each. Is it possible to use cheaper DC motors with some type of position tracking while keeping the cost down?

HARDWARE

Threaded rod is probably the cheapest way to move your XYZ axis. What about couplings and guide rods? Check out how this guy made a CNC out of parts from his local hardware store.

ELECTRONICS

No arduino with Easysteppers here – too expensive. We’ve just seen a super cheap controller a few days ago. If we use something other than NEMA steppers, it will radically change the typical electronic controller for our super cheap 3d printer.

EXTRUDER

What is the cheapest way to melt and extrude plastic? What about using thermistors in place of thermocouples? Let’s think out of the box with this, and see if we can get away from the typical stepper motor based extruder. Remember, everything is low cost. If we have to sacrifice some resolution, that is OK.

So there you go. Let’s hear your input on the issue. We need to make 3D printers a lot more affordable and we want to hear any ideas you have on the topic in the comments below. Do you think this is in our future and why?


The 2015 Hackaday Prize is sponsored by:

Lego Printer Prints Lego

[Gosse Adema] made his very first instructable by detailing his Lego 3D printer build. It’s Prusa i3 based, and originally started out as an A4 plotter with repurposed steppers out of an old HP printer. After upgrading to some NEMA 17 steppers, it became a full-blown 3D printer.

It turns out that NEMA 17 stepper mounting holes align perfectly with Lego, making it super easy to mount them. Check out this Lego ‘datasheet’ for some great details on measurements.

The brains of the printer are occupied by Marlin running atop a Atmega 2560, and Pronterface for the PC software. He tops it off with a Geeeteck built MK8 extruder boasting a 0.3 mm nozzle that accepts 1.75 mm filament.

As with almost any DIY 3D printer build, his first prints didn’t turn out so well. After adjusting the nozzle and filament size in the software, he started to get some good results. Be sure to check out the video below to see this Lego 3D printer in action.

Continue reading “Lego Printer Prints Lego”