Creepy Tracking At The House Of Mouse

If it’s been a few years since you’ve been to Disney World, you’re in for a surprise on your next visit. It seems the Happiest Place on Earth has become the Trackiest Place on Earth thanks to the Disney MagicBand, a multipurpose wristband that acts as your pass to all the Disney magic.

[Adam] recently returned from a Disney vacation and brought back his MagicBand, which quickly went under the knife for a peek at the magic inside. It turns out the technology is fairly mundane — a couple of flex PCBs with trace antennas and the usual trappings of an RFID transponder. But there’s also another antenna and a chip identified in a separate teardown as an NRF24LE1 2.4 GHz transceiver and microcontroller. The whole thing is powered by a coin cell, meaning the band isn’t just being interrogated by RFID – it’s actively transmitting and receiving.

What exactly it’s doing isn’t clear; Disney was characteristically cagey about specifics when [Adam] looked into the details, saying only that the bands “provide information that helps us improve the overall experience in our parks”. If you put aside the privacy concerns, it’s truly mind-boggling to think about the systems that must be in place to track thousands of these MagicBands around the enormous Disney property. And we can’t help but wonder if some of Disney R&D’s EM-Sense technology is at work in these wearables.

Thanks to [JohnU] for the tip.

Hackaday Prize Entry: Shakelet

A person who is deaf can’t hear sound, but that doesn’t mean they can’t feel vibrations. For his Hackaday Prize entry, [Alex Hunt] is developing the Shakelet, a vibrating wristband for that notifies hearing impaired people about telephones, doorbells, and other sound alerts.

To tackle the difficulty of discriminating between the different sounds from different sources, [Alex’s] wants to attach little sound sensors directly to the sound emitting devices. The sensors wirelessly communicate with the wristband. If the wristband receives a trigger signal from one of the sensors, it alerts the wearer by vibrating. It also shows which device triggered the alert by flashing an RGB LED in a certain color. A first breadboard prototype of his idea confirmed the feasibility of the concept.

After solving a few minor problems with the sensitivity of the sensors, [Alex] now has a working prototype. The wristband features a pager motor and is controlled by an ATMEGA168. Two NRF24L01+ 2.4 GHz wireless transceiver modules take care of the communication. The sound sensors run on the smaller ATTiny85 and use a piezo disc as microphone. Check out the video below, where Alex demonstrates his build:

Continue reading “Hackaday Prize Entry: Shakelet”

Get Up, Stand Up. With A Little Help From The Mindfulness Bracelet

[Becky Stern] has created the mindfulness bracelet, a wearable which looks great and serves an important purpose. The bracelet buzzes every hour to remind you to stand up and take a break from work, soldering, gaming, or whatever it is you may be doing. The bracelet is made up of interlinked figure 8 shapes of leather, though [Becky] says rubber from a bicycle inner tube works great as well. The final shape reminds us of the link belts sometimes found on lathes or other industrial equipment. The links are the perfect size to slip an Arduino Gemma in, along with a battery and vibrating motor. A NPN transistor, diode, and resistor round out the entire bill of materials for this design. This bracelet is a heck of a lot cheaper than the Apple watch feature which inspired it!

The time interval is set in the code to 1 hour, and can be adjusted by the user. Although the times are stored in milliseconds, the design does use the ATtiny85’s Watchdog Timer (WDT) to conserve power. This means the time can drift up to 30 seconds per hour, which is fine in this application.

Click past the break to see the bracelet in action!

Continue reading “Get Up, Stand Up. With A Little Help From The Mindfulness Bracelet”

[Peter] And The Amazing Technicolor Phone Wire Bracelet

When a job left him with some extra phone wire, [Peter] didn’t toss it in the scrap pile. He broke out the casting resin and made an awesome bracelet (Imgur link). [Peter] is becoming quite an accomplished jeweler! When we last checked in on him, he was making rings out of colored pencils.

Casting the wire in resin was as simple as building a square form, placing the wires, then filling the form with appropriate amounts of epoxy and hardener. Once the epoxy cured, [Peter] drilled out the center with a sharp Forstner bit. A band saw brought the corners of the block closer to a cylinder.

From there it was over to the lathe, where [Peter] used a jam chuck to hold the bracelet in place. Once he shaped the bracelet [Peter] started wet sanding. It took Lots and lots of sanding both inside and out to finish the bracelet. The result is a mirror smooth finish, with bits of insulation bright copper just popping out of the resin.

One might think that the bracelet would be rough with all that copper, but [Peter] mentions on his Reddit Thread that it feels like plastic, though the bits of copper were “very pokey” before sanding. We’d recommend tossing on a clear coating to protect the exposed copper. Worn on a wrist, all that exposed metal would start oxidizing in no time.

This hack gives us lots of ideas for casting wearable circuits. Some WS2812’s and a teensy would make for a pretty flashy setup! Got an idea for a project? Tell us about in the comments, or post it up on Hackaday.io!

Continue reading “[Peter] And The Amazing Technicolor Phone Wire Bracelet”

3D Printed RGB LED Bracelet

3dprintedrgbbraclet

[Marcus’s] 3D-printed LED bracelet has moved through a number of revisions recently, but each iteration is impressive in both simplicity and functionality. Inspired to experiment with his print of [nervoussystem’s] Diagrid Bracelet, [Marcus] took the opportunity to add some LEDs with his first build, which combined a strip of RGB LEDs, a small battery, and an Adafruit Trinket microcontroller.

A second build soon followed, which overhauled the bracelet’s design into a more solid form and managed to double the amount of LEDs by upgrading to a different strip. The bracelet is currently in its third revision, cycling through the spectrum for around 3.5 hours on a single charge. This build also sports a 3-axis accelerometer: when the wearer shakes the bracelet, the colors skip around. If shaken long enough, the bracelet will enter a dazzling flurry of color flickering. Stick around after the break for a few demonstration videos. If you want to print your own, head over to [Marcus’s] Thingiverse file.

Continue reading “3D Printed RGB LED Bracelet”

Wristband RFID Unlocks Car Door And Starts Engine

[João Ribeiro] is an electronics engineer by day, but in his free time he likes to ply his trade on everyday items. Recently he’s been integrating his own microcontroller network to unlock and start his car via RFID. In addition to the joy of pulling apart the car’s interior, he spent time designing his own uC breakout board and developing an RFID reader from a single chip.

He’s working with a 1988 Mercedes that has very little in the way of electronics. It sounds like the stock vehicle didn’t even include a CAN bus so the prelude to the RFID hack had him installing a CAN bus network made up of two microcontrollers. One reads the velocity and RPM while the other displays it on the tachometer. When he began the tag-based entry system he used an RFID reader module for prototyping, but eventually built his own reader around the TRF7960 chip. This included etching his own receiver coil which was mounted in the side-view mirror bracket. To unlock the doors he holds the bracelet up to the mirror and the vehicle lets him in. The video after the break starts with a demonstration of the completed project and moves on to some build videos.

We certainly like the idea of using a bracelet rather than implanting the tag in the meaty part of your hand.

Continue reading “Wristband RFID Unlocks Car Door And Starts Engine”

See In The Dark With This Bracelet Build

Even though she’s only in 8th grade, [Hannah Prutchi] is turning into a very respectable builder. She designed SharkVision, a wearable distance sensor that is meant to help the blind find objects they might bump into.

The SharkVision gets its name from shark’s ability to ‘see’ prey in their surroundings by sensing the local magnetic field. Instead of building her own Ampullae of Lorenzini, [Hannah] decided to take the easy route and use a few infrared sensors mounted to a bracelet. Whenever something is picked up by the proximity sensor, a voltage is applied to a pager motor telling the wearer they’re about to run into something.

[Hannah] and her classmates have successfully tested the SharkVision bracelet by walking around their classroom with eyes closed. They didn’t bump into anything, a fact [Hannah] attributes to neuroplasticity. We think it’s a neat build, but we’re wondering if this could be given to a population of blind people.