Kinetic Wire Animatronics Bend It Like Disney

The House of Mouse has been at the forefront of entertainment technology from its very beginnings in an old orange grove in Anaheim. Disney Imagineers invented the first modern animatronics in the 1960s and they’ve been improving the technology ever since, often to the point of being creepy.

But the complicated guts of an animatronic are sometimes too much for smaller characters, so in the spirit of “cheaper, faster, better”, Disney has developed some interesting techniques for animated characters made from wire. Anyone who has ever played with a [Gumby] or other posable wireframe toys knows that eventually, the wire will break, and even before then will plastically deform so it can’t return to its native state.

Wires used as the skeletons of animated figures can avoid that fate if they are preloaded with special shapes, or “templates,” that redirect the forces of bending. The Disney team came up with a computational model to predict which template shapes could be added to each wire to make it bend to fit the animation needs without deforming. A commercially available CNC wire bender installs the templates that lie in the plane of the wire, while coiled templates are added later with a spring-bending jig.

The results are impressive — the wire skeleton of an animated finger can bend completely back on itself with no deformation, and the legs of an animated ladybug can trace complicated paths and propel the beast with only servos pulling cables on the jointless legs. The video below shows the method and the animated figures; we can imagine that figures animated using this technique will start popping up at Disney properties eventually.

From keeping guests safe from robotic harm to free-flying robotic aerialists, it seems like the Disney Imagineers have a hardware hacker’s paradise at the Happiest Place on Earth.

Continue reading “Kinetic Wire Animatronics Bend It Like Disney”

Disney Builds Autonomous Graffiti Drone

Ever seen a bit of graffiti in a strange location and wondered how the graffiti artist got up there? It might have been a drone rather than an athletic teen. Disney research has just published an interesting research paper that describes the PaintCopter: an autonomous drone fitted with a can of spray paint on a pan-tilt arm. It’s more than just sticking a paint can on a stick, though: they built a system that can scan a 3D surface then calculate how to paint a design on it, and then do it autonomously. The idea is that they want to use this to paint difficult-to-reach bits of theme parks, or to add seasonal decorations without sending someone up a ladder.

Continue reading “Disney Builds Autonomous Graffiti Drone”

An Enchanted Rose For A Beauty

Being a maker opens up so many doors in terms of ways to romance one’s partner through passion projects. If their passion is Disney films, then you may handily make them the enchanted rose from Beauty and the Beast for their birthday. Easy-peasy.

In addition to the love and care that went into this build, redditor [Vonblackhawk2811] has included a set of LEDs, salvaged from cheap flashlights and electronic candles, which are controlled by four toggle switches and offer multiple lighting selections — candlelight, soft white, colour cycling, and bright white — to appropriately set the mood. As if that wasn’t enough to romance his sweetheart, he’s also included an aux cord input and a pair of speakers so they may be serenaded by a tune or two as they dance the night away.

Liberal use of hot glue and duct tape are keeping the electronics secured, preventing any shorts. After all — what would it say if this gift went up in flames? An inspired stencil design — hand drawn and cut out — was used to apply a spray-on frosted glass finish to the cloche, and a romantic phrase was burned into the base, completing this heartfelt gift. The only quibble we have is that now we all have to step up our game in the courtship department.

That is, unless one is sporting the Romance Pants.

[via /r/DIY]

Creepy Tracking at the House of Mouse

If it’s been a few years since you’ve been to Disney World, you’re in for a surprise on your next visit. It seems the Happiest Place on Earth has become the Trackiest Place on Earth thanks to the Disney MagicBand, a multipurpose wristband that acts as your pass to all the Disney magic.

[Adam] recently returned from a Disney vacation and brought back his MagicBand, which quickly went under the knife for a peek at the magic inside. It turns out the technology is fairly mundane — a couple of flex PCBs with trace antennas and the usual trappings of an RFID transponder. But there’s also another antenna and a chip identified in a separate teardown as an NRF24LE1 2.4 GHz transceiver and microcontroller. The whole thing is powered by a coin cell, meaning the band isn’t just being interrogated by RFID – it’s actively transmitting and receiving.

What exactly it’s doing isn’t clear; Disney was characteristically cagey about specifics when [Adam] looked into the details, saying only that the bands “provide information that helps us improve the overall experience in our parks”. If you put aside the privacy concerns, it’s truly mind-boggling to think about the systems that must be in place to track thousands of these MagicBands around the enormous Disney property. And we can’t help but wonder if some of Disney R&D’s EM-Sense technology is at work in these wearables.

Thanks to [JohnU] for the tip.

Suddenly, Wireless Power Transmission Is Everywhere

Wireless power transfer exists right now, but it’s not as cool as Tesla’s Wardenclyffe tower and it’s not as stupid as an OSHA-unapproved ultrasonic power transfer system. Wireless power transfer today is a Qi charger for your phone. It’s low power – just a few amps — and very short range. This makes sense; after all, we’re dealing with the inverse square law here, and wireless power transfer isn’t very efficient.

Now, suddenly, we can transfer nearly two kilowatts wirelessly to electronic baubles scattered all over a room. It’s a project from Disney Research, it’s coming out of Columbia University, it’s just been published in PLOS one, and inexplicably it’s also an Indiegogo campaign. Somehow or another, the stars have aligned and 2017 is the year of wirelessly powering your laptop.

disney-research-quasistatic-cavity-roomThe first instance of wireless power transfer that’s more than just charging a phone comes from Disney Research. This paper describes quasistatic cavity resonance (QSCR) to transfer up to 1900 Watts to a coil across a room. In an experimental demonstration, this QSCR can power small receivers scattered around a 50 square meter room with efficiencies ranging from 40% to 95%. In short, the abstract for this paper promises a safe, efficient wireless power transfer that completely removes the need for wall outlets.

In practice, the QSCR from Disney Research takes the form of a copper pole situated in the center of a room with the walls, ceiling, and floor clad in aluminum. This copper pole isn’t continuous from floor to ceiling – it’s made of two segments, connected by capacitors. When enough RF energy is dumped into this pole, power can be extracted from a coil of wire. The video below does a good job of walking you through the setup.

As with all wireless power transmission schemes, there is the question of safety. Using finite element analysis, the Disney team found this room was safe, even for people with pacemakers and other implanted electronics. The team successfully installed lamps, fans, and a remote-controlled car in this room, all powered wirelessly with three coils oriented orthogonally to each other. The discussion goes on to mention this setup can be used to charge mobile phones, although we’re not sure if charging a phone in a Faraday cage makes sense.

motherbox-charging-phone-squareIf the project from Disney research isn’t enough, here’s the MotherBox, a completely unrelated Indiegogo campaign that was launched this week. This isn’t just any crowdfunding campaign; this work comes straight out of Columbia University and has been certified by Arrow Electronics. This is, by all accounts, a legitimate thing.

The MotherBox crowdfunding campaign promises true wireless charging. They’re not going for a lot of power here – the campaign only promises enough to charge your phone – but it does it at a distance of up to twenty inches.

At the heart of the MotherBox is a set of three coils oriented perpendicular to each other. The argument, or sales pitch, says current wireless chargers only work because the magnetic fields are oriented to each other. The coil in the phone case is parallel to the coil in the charging mat, for instance. With three coils arranged perpendicular to each other, the MotherBox allows for ‘three-dimensional charging’.

Does the MotherBox work? Well, if you dump enough energy into a coil, something is going to happen. The data for the expected charging ranges versus power delivered is reasonably linear, although that doesn’t quite make sense in a three-dimensional universe.

Is it finally time to get rid of all those clumsy wall outlets? No, not quite yet. The system from Disney Research works, but you have to charge your phone in a Faraday cage. It would be a great environment to test autonomous quadcopters, though. For MotherBox, Ivy League engineers started a crowdfunding campaign instead of writing a paper or selling the idea to an established company. It may not be time to buy a phone case so you can charge your phone wirelessly at Starbucks, but at least people are working on the problem. This time around, some of the tech actually works.

Continue reading “Suddenly, Wireless Power Transmission Is Everywhere”

Keeping Humanity Safe from Robots at Disney

Almost every big corporation has a research and development organization, so it came as no surprise when we found a tip about Disney Research in the Hackaday Tip Line. And that the project in question turned out to involve human-safe haptic telepresence robots makes perfect sense, especially when your business is keeping the Happiest Place on Earth running smoothly.

That Disney wants to make sure their Animatronics are safe is good news, but the Disney project is about more than keeping guests healthy. The video after the break and the accompanying paper (PDF link) describe a telepresence robot with a unique hydrostatic transmission coupling it to the operator. The actuators are based on a rolling-diaphragm design that limits hydraulic pressure. In a human-safe system that’s exactly what you want.

The system is a hybrid hydraulic-pneumatic design; two actuators, one powered by water pressure and the other with air, oppose each other in each joint. The air-charged actuators behave like a mass-efficient spring that preloads the hydraulic actuator. This increases safety by allowing the system to be de-energized instantly by venting the air lines. What’s more, the whole system presents very low mechanical impedance, allowing haptic feedback to the operator through the system fluid. This provides enough sensitivity to handle an egg, thread a needle — or even bop a kid’s face with impunity.

There are some great ideas here for robotics hackers, and you’ve got to admire the engineering that went into these actuators. For more research from the House of Mouse, check out this slightly creepy touch-sensitive smart watch, or this air-cannon haptic feedback generator.

Continue reading “Keeping Humanity Safe from Robots at Disney”

VertiGo Robot Drives Up Walls

This collaboration between ETH and the Disney empire’s research arm is a ultra-light robot that can roll across horizontal surfaces and also transition and climb walls.

The robot has four wheels with one steerable set, but its secret sauce is the two propellers gimbaled on its back. Using these propellers it can move itself across the ground, but also, when approaching a wall, provide enough thrust to overcome the gravity vector.

Naturally, the lighter the robot, the less force will be needed to keep it on the wall. That’s why the frame is made from carbon fiber corrugated sandwich panels. The motors, batteries, and controllers are all also light and small.

We liked how the robot was, apparently, using its propellers to provide additional stability even while on the ground. There is a video after the break, and more information can also be found on the Disney Research webpage.

Continue reading “VertiGo Robot Drives Up Walls”