Second Skin Synth Fits Like a Glove

California textiles artist and musician [push_reset] challenged herself to make a wearable, gesture-based synth without using flex-sensing resistors. In the end, she designed almost every bit of it from the ground up using conductive fabric, resistive paint, and 3-D printed parts.

A couple of fingers do double duty in this glove. Each of the four fingertips have a sensor made from polyurethane, conductive paint, and conductive fabric that is connected to wires using small rivets. These sensors trigger different samples on an Edison that are generated with Timbre.js. The index and middle fingers also have knuckle actuators made from 3-D printed pin-and-slot mechanisms that turn trimmer pots. Bending one knuckle changes the delay timing while the other manipulates a triangle wave.

On the back of the glove are two sensors made from conductive fabric. Touching one up and down the length will alter the reverb. Sliding up and down the other alters the frequency of a sine wave. [push_reset] has kindly provided everything necessary to re-create this build from the glove pattern to the STL files for the knuckle actuators. Check out a short demonstration of the glove after the break. If you love a parade, here’s a wearable synth that emulates a marching band.

Continue reading “Second Skin Synth Fits Like a Glove”

Poking Around Textiles With Your Multimeter

Looking for a fun wearable electronics project? While you can buy specific fabric and conductive thread for your projects, sometimes you can even find conductive fabric where you might not expect it!

In this latest video by Adafruit, [Becky Stern] goes undercover at a fabrics store with her trusty multimeter to find some new material that can be used for electronics projects! While pickings are slim, she made some useful discoveries — most metallic fabrics aren’t conductive, but some are — You’ll definitely need to take your multimeter with you.

Another funny quirk is that some fabrics are only conductive in one direction! Which could make for a really cool project that seemingly defies conventional wiring — or you can sew a conductive thread perpendicular to the continuity to connect it all together.

Continue reading “Poking Around Textiles With Your Multimeter”

A blanket that detects its own orientation

If you want to capture a 3D model of a physical object, you could use a Kinect, a couple of lasers, constructive light, or even a simple touch sensor mounted on a robotic arm. Those are all expensive devices, and somewhat unnecessary now that you can just throw a blanket over an object and get a 3D model instantaneously.

The project is called IM BLANKY and it’s supposed to reproduce 3D shapes by simply throwing it over an object. The petals in the flower motif are pieces of conductive fabric that serve as contacts for the electrified tassel in the center of each flower. When the blanket is thrown over an object, the tassel is pulled by gravity, makes contact with one of the six conductive petals and sends a tilt switch to a microcontroller.

While we’re not too sure about the resolution IM BLANKY will provide with only 20 tilt sensors, but we imagine this could be used for a few medical applications.

via dvice

Full fabric soft switches

soft_switch

When we created our backpack strap WiFi detector for Engadget, we embedded soft switches to control the device. They used two sheets of aluminum foil separated by a layer of foam with holes punched in it. [Plusea] has taken a similar approach but has replaced the aluminum foil with conductive fabric. The end result is a set of three soft buttons that can be easily washed. Have a look at the video of it in action below. Check out the followup project that uses the buttons to replace a scroll wheel. Continue reading “Full fabric soft switches”