STM32 Nucleo, The Mbed-Enabled, Arduino-Compatable Board

The STM32 line of microcontrollers – usually seen in the form of an ST Discovery dev board – are amazingly powerful and very popular micros seen in projects with some very hefty processing and memory requirements. Now, ST has released a great way to try out the STM32 line with the Nucleo board.

There are two really great features about these new Nucleo boards. First, they’re mbed compatable, making them a great way to get started in the ARM development world. Secondly, they have Arduino pin headers right on the board, giving you access to all your shields right out of the box.

Right now, there are four varieties of the Nucleo board based on the STM32F030, -F103, -F152, and -F401 microcontrollers. The STM32F401 is the high-powered variant, An ARM Cortex-M4 microcontroller running at 84 MHz, 512kB of Flash, and enough I/O for just about any project.

If you’d like to get your hands on one of the STM32 Nucleo boards, you can order a voucher to pick one up at Embedded World in Germany next week. Otherwise, you’re stuck ordering from Mouser or Farnell. Bonus: the high-end F401-based board is only $10 USD.

A $5 ARM development board

Most of you know that there are plenty of ARM powered development boards out there, so you may not be really sure what a new one can still bring to the table.

With a $5 price tag, the open hardware McHck (pronounced McHack) is meant for quickly building projects on a small budget. The board created by [Simon] is based on a Freescale Cortex M4 microcontroller, and can be plugged directly into one’s computer. As a Direct Firmware Update (DFU) bootloader is present on the microcontroller, there is no need for external programming equipment.

The board has unpopulated footprints that allow users to add other functionalities that may be required for their future projects: a Real Time Clock (RTC), a Boost regulator for single cell battery operation, Buck and linear regulators, a Lithium Polymer (LiPo) battery charger and even an External Flash storage.

The Bill of Materials can be found on the project wiki and the McHck community will soon launch a crowdfunding campaign to send the 5th version of the board to all the hobbyists that may be interested.

And if you’re curious, you can also have a look at all the other boards that Hackaday featured these last months: the browser based IDE arm boardquad-core ARM dev board and the Matchbox ARM.

Free (…as in ‘free beer’) ARM kit

NXP holds a lot of market share for their ARM based solutions as it is. That’s why we were a little surprised when we found a link on their website announcing that they were giving away free LPCXpresso development boards, based on their Cortex-M0 line.

Catches? Unfortunately there are a few to get the board shipped and running. In order to do so, you must…

  • register with a corporate email address
    …the promo is targeted at engineers
  • use the crippled IDE supplied with the board
    …due to hard to find (non-existent?) documentation for the integrated LPC-Link
  • upload an original video of the physical destruction of a competing board to the NXP website

While killing your Arduino may not sound like the most fun, some qualified readers may be interested in moving up to 32-bits for a price that is hard to beat.

SmartLCD makes video for microcontrollers easy

[Rossum] developed a host board that makes it easy to drive a TFT screen using an inexpensive microcontroller. He’s looked around at a bunch of LCD’s that are easy to get your hands on and decided that the iPod Nano 2G screens are the right balance of performance (176×132 TFT) and low cost ($1-$5). They’re not particularly difficult to talk to, but with 22 pins they’re a bit hardware hungry.

He takes us through the signal sniffing he used to figure out the communications process. From there he harness the power of an ARM Cortex M0 processor, which he’s worked with in the past, to drive the screen. His implementation results in a driver board called the SmartLCD that takes care of the screen’s parallel protocol, power, and backlight. From there it’s just four connections and you can use a small microcontroller like the Arduino seen above with ease. See what it can do after the break.

Continue reading “SmartLCD makes video for microcontrollers easy”

Gaming system for less than three bucks

[Rossum’s] latest project just hit and as usual, he doesn’t disappoint. Using an ARM cortex M0 he built a gaming system for less than $3 in parts. The M0 is a bit underpowered for this but at $1 it can’t be beat in price. He worked some video generation voodoo to get the signal he wanted but also mentions that upgrading to a bit more expensive chip like the Cortex M3 would solve this problem. The other part of the gaming system is an analog stick (again for about $1) that is the only input for the system.

Can’t say that you remember hearing about [Rossum] before? Go back and check out his Wikipedia reader, AVR media player, and AVR iPod touch killer.

‘Mod in the USA’ N900 PUSH competition

Just when you think you’ve heard all you can about the N900 PUSH competition, we have some more news for you.

The original PUSH competition was only for UK members, but now Nokia has introduced the ‘Mod in the USA‘ N900 PUSH competition. Similar to the original, anyone (within region) can submit a cool mod, hack, useful creation that would use the N900. Winners will be selected, and thats when the differences start.

There will be a $10,000 for 1st prize, and smaller prizes for 2nd and 3rd. Plus a trip to Vegas to showcase the 3 winning hacks at CTIA 2010 as well as funding, N900s and support to build the mods.

Don’t have an idea but still want to try? They have a discussion group to get the juices flowing, or you could always discuss in our comments.

[Update: The original PUSH competition was actually world wide. Thanks Matt and Ricardo]

Review: mbed NXP LPC1768 microcontroller

mbed is a next-generation 32-bit microcontroller platform. It’s a prototyping and teaching tool somewhat along the lines of Arduino. On steroids. With claws and fangs. Other contenders in this class include the MAKE Controller, STM32 Primer and Primer 2, Freescale Tower, and Microchip’s PIC32 Starter Kit. The mbed hardware has a number of advantages (and a few disadvantages) compared to these other platforms, but what really sets it apart is the development environment: the entire system — editor, compiler, libraries and reference materials — are completely web-based. There is no software to install or maintain on the host system.
Continue reading “Review: mbed NXP LPC1768 microcontroller”