Portable SMT Lab for Hacker On The Go


We admit it, we’re suckers for workbenches and toolboxes. [Jon] must feel the same way, because he built this portable surface mount electronics lab. It’s a beast of a project, which might be why it’s project #666 on Hackaday.io. [Jon] spends a lot of time working off site, and keeps finding himself without proper surface mount soldering tools. Ever tried to stack an 0603 resistor with a 40 watt pistol grip iron? Take our word for it, the results are not pretty.

[Jon] started with two cheap aluminum cases from Harbor Freight. He loaded them up with the typical lab supplies: soldering iron, oscilloscope, multimeter, dual lab supplies, and a good assortment of hand tools. He then added a few choice SMT tools: A hot air tool, a good LED light, and a stereo magnifier. Many of the tools are mounted on DIN rail along the rear of the cases.  All the low voltage equipment runs on  a common 12V bus.

We really like what [Jon] did with the tops of the cases. Each lid contains a plywood sheet. When the cases are opened, the plywood becomes a work surface. As an added bonus, the wood really strengthens the originally flimsy tool cases. The only thing we would add is a good portable anti-static mat.

The final build is really slick. Once the cases are open, four bolts act as feet. The microscope swings out, and the hot air gun hangs on the right side. Plug in power and you’ve gone from zero to SMT hero in under 1 minute.

RFID Reader Snoops Cards from 3 Feet Away


Security researcher [Fran Brown] sent us this tip about his Tastic RFID Thief, which can stealthily snag the information off an RFID card at long range. If you’ve worked with passive RFID before, you know that most readers only work within inches of the card. In [Fran's] DEFCON talk this summer he calls it the “ass-grabbing method” of trying to get a hidden antenna close enough to a target’s wallet.

His solution takes an off-the-shelf high-powered reader, (such as the HID MaxiProx 5375), and makes it amazingly portable by embedding 12 AA batteries and a custom PCB using an Arduino Nano to interpret the reader’s output. When the reader sees a nearby card, the information is parsed through the Nano and the data is both sent to an LCD screen and stored to a .txt file on a removable microSD card for later retrieval.

There are two short videos after the break: a demonstration of the Tastic RFID Thief and a quick look at its guts. If you’re considering reproducing this tool and you’re picking your jaw off the floor over the price of the reader, you can always try building your own…

[Read more...]

Aluminum Unibody Nintendo 64


[Travis] wanted us to take a look at his N64 portable to see if it could be featured on Hackaday. By the looks of it, we’re going to say hell yeah. Everything on this portable N64, down to the buttons, is milled from aluminum. It’s an amazing build that raises the bar of what a portabalized game system can be.

Inside this anodized enclosure is the circuit board from an original N64. To cut down on the size, [Travis] milled a new heat sink for the CPU and GPU. All the games – quite possibly all the games ever released for the N64 – are stored on an SD card and accessed through an EverDrive 64. Two 5000 mAh Lipo batteries provide three hours of play time on a beautiful high-res screen.

What’s even more amazing is that [Travis] machined all the parts on an exceedingly small, manual mini-mill. Truly a portabalized console for the ages.

You can check out a gallery of pics [Travis] sent in and his demo video below.

[Read more...]

ContactKey: A portable, battery-powered phonebook


Although it’s still a prototype, [Russell] tipped us off to his battery-powered device for storing your contacts list: ContactKey. (Warning: Loud sound @ beginning). Sure, paper can back up your contact information, but paper isn’t nearly as cool to show off, nor can it receive updates directly from your Android. The ContactKey displays a contact’s information on an OLED screen, which you can pluck through by pressing a few buttons: either ‘Up,’ ‘Down,’ or ‘Reset’. Although the up/down button can advance one contact at a time, holding one down will fly through the list at lightning speed. A few seconds of inactivity causes a timeout and puts the ContactKey to sleep to conserve battery life.

This build uses an ATMega328 microcontroller and an external EEPROM to store the actual list. [Russell] wrote an Android app that will sync your contact list to the ContactKey over USB via an FTDI chip. The microcontroller uses I2C to talk to the EEPROM, while an OLED display interfaces to the ATMega through SPI. We’re looking forward to seeing how compact [Russell] can make the ContactKey once it’s off the breadboard; the battery life for most smartphones isn’t particularly stellar. Phones of the future will eventually live longer, but we bet it won’t be this one.

[Read more...]

NESPo: another 3D printed portable NES


Grab your favorite cartridge and violently blow into the end, because [Dave Nunez] is sending us on a nostalgia trip with his 3D printed portable NES. He takes the typical route of chopping up a Nintendo on a chip (NOAC) retro machine rather than sacrifice a real NES, and opts for a NiMH battery over lithium (which isn’t a bad idea; they can burst into flames if you charge them incorrectly). The battery life is, however, tolerable: 2.5 to 3 hours.

All the components are packed into a custom-made 3D printed PLA enclosure, which [Dave] kindly shares on thingiverse. He also decided to 3D print each of the buttons and their bezels/housings, which he then topped off by cutting acrylic sheets that seal up the front and back. As a final touch, [Dave] slips in some custom art under the acrylic and mounts a printed LED nameplate in the corner.

We’ve seen [Dave's] work at Hackaday before, when he built a one-size-fits-all-consoles arcade controller.

Briefcase mill


Take the machine shop with you; that’s the mantra which drove [Ryan] to build this CNC mill in a briefcase. That album will give you a taste of the final product. But you’ll want to dig through two pages of his forum thread starting with this post in order to behold the build process.

The image above is only part way through the fabrication, but we thought it gave the best overall view of his work. It’s missing the cables which connect to the control circuitry in the lid. The bed has also not been installed and this was before he fabricated the protective case for the PCBs.

Getting everything to fit inside of a folding case was quite a trick. Of course he used CAD to make sure it was possible. There are several places where the clearance when closed is about 2mm. We’re shocked by the build quality of the mill itself. It’s a novel idea to make it portable, but the accuracy and reliability of the machine didn’t suffer for the concept.

If you need a desktop mill that’s not quite as portable here’s a project which will dish out some inspiration.

Atari 2600 has a Raspberry Pi hiding under the hood


Seriously, the drawer pull on this Atari 2600 is not stock. Don’t they know this voids the warranty? The thing is, you won’t actually find any of the original internals anyway. When building this portable emulator housed in a 2600 case [Linear Nova] was careful to ensure that everything could be restored to its original condition (except for two hinges mounted on the back) sometime down the road. That’s a good goal to set for yourself. We think the build is the fun part of most projects and often wonder what to do with them when they’re done and our interest has waned.

A seven-inch LCD screen was attached to the underside of the lid using Velcro. When tilted up it’s at a nice viewing angle for the player. [Linear] prefers to use a Wii remote as the control this portable video game emulator. It connects to the Raspberry Pi over Bluetooth using a USB dongle. The advantage of this is that you just throw the remote inside the case too. For now there are two power cords, one for the RPi and the other for the LCD screen but he plans to add a power hub in the future to narrow this down to one. We wonder it that would also be a good time to add his own rechargeable battery pack option? There should be enough room for an RC style pack.