More Pole Climbing Bots, Haul Antennas and Bikes

Pole Climbing Robot

A few days ago we posted about a Pole Climbing Device. Since then we’ve gotten a few emails with tips about other pole climbers. We are going to talk about two of those here, they are completely different from each other and have completely different uses. Who knew there was such a variety of pole climber bots out there?

First up is this an antenna-wielding bot that climbs up poles in order to promote over the air communications. The system is called E-APS (Emergency Antenna Platform System) and is used by enthusiasts to turn any ol’ parking lot lamp post into an antenna tower. This particular machine has a large rectangular frame made from extruded aluminum. There are four wheels, two of which are driven by what appears to be a car power window motor. The weight of the antenna forces each set of two wheels to be pressed up against opposite sides of the pole, creating enough friction to not only support the unit but allow it to travel up and down the pole. There is not a lot of explanation about the build but there are a lot of detailed photos of the final product. We saw E-APS in action at MakerFaire New York 2013, and it was very impressive.

We’ve covered this next device before but it’s worth mentioning again. The project assumes that no bike lock is strong enough to deter the most persistent thief. Instead of locking your bike up and hoping for the best, this ‘theft preventer’ hikes your bike up out of the reach of would-be bike nabbers. So how do you get your bike down once it is up the pole? A remote control fob, of course.

There are 2 cool videos of these inventions after the break…..

Continue reading “More Pole Climbing Bots, Haul Antennas and Bikes”

Rolly Bot Puts a New Spin on Independent Wheel Control

rolly bot

All of [Darcy]’s friends were making wheeled robots, so naturally, he had to make one too. His friends complicated theirs with h-bridges and casters for independent wheel maneuvering, but [Darcy] wanted something simpler. A couple of 9g servos later, the Rolly Bot was born.

Rolly Bot is self-balancing because of its low center of gravity. Should it hit a wall, the body will flip over, driving it back in the other direction. The BOM comes to a whopping $10, and that includes continuous rotation servos. It does not include the remote control capability he added later, or the cost of the CNC you would need to completely replicate this build. He even made a stand so he could test the wheels during programming.

[Darcy]’s code is on his site along with some pictures of another version someone else built. Watch Rolly Bot roll around after the jump.

How would you make this build even simpler? Tell us in the comments.

Continue reading “Rolly Bot Puts a New Spin on Independent Wheel Control”

What Could Possibly Go Wrong Giving a Robot a Chainsaw?

Chainsaw wielding robot

[Morgan Rauscher] is a rather eccentric artist, inventor, maker, professor… jack of all trades. His latest project is called the Art-Bot – and it’s an 8′ robotic arm equipped with a chainsaw. Did we mention you can control it via arcade buttons?

He’s been building sculptures for over 10 years now, and has enjoyed observing the evolution of automated manufacturing – from CNC machines to laser cutters and even now, 3D printers. He loves the technologies, but fears machines are making it too easy – distancing us from the good old physical interaction it once took to make things with a few simple tools. His Art-Bot project attempts to bridge that gap by bringing tactile transference to the experience.

The cool part about the Art-Bot is that it is mostly made of recycled materials – in particular, bicycle parts!

Making a robot from bicycle parts is really not that difficult, and I highly recommend it.

The rest of the robot consists of electric actuators (linear), the control circuitry, and of course — a chainsaw. For safety’s sake, [Morgan] also built a polycarbonate wall around it to protect users from it going on a murderous rampage wood chips and other debris thrown from the robot.

Continue reading “What Could Possibly Go Wrong Giving a Robot a Chainsaw?”

THP Hacker Bio: nsted

 

thp-contestant-bio-nsted

Have you ever wanted to build a robot arm, or even a full robot, but were put off by the daunting task of making all of those articulations work? Moti could make that a lot easier. The project seeks to produce smart servo motors which can connect and communicate in many different ways. It’s a great idea, so we wanted to know more about the hacker behind the project. After the jump you’ll find [nsted’s] answers to our slate of question for this week’s Hacker Bio.

Continue reading “THP Hacker Bio: nsted”

Step Right Up or Cower In Fear; the 7-Story Car-Juggling Robot Is Here

Sometimes we see a project that’s just as frightening as it is awesome. The Bug Juggler is a prime example of this phenomenon. A seven-story diesel-powered humanoid robot is one thing, but this one will pick up two VW Beetles, put one in its pocket, pick up a third, and juggle them. Yes, juggle them.

The Bug Juggler will be driven by a brave soul sitting in the head-cage and controlling him through haptic feedback connected to high-speed servo valves. A diesel engine will generate hydraulic pressure, and the mobility required for juggling the cars will come from hydraulic accumulators.

The project is in the capable hands of team members who have built special effects, a diesel/hydraulic vehicle for hauling huge sections of pipe, and mechanisms for Space Shuttle experiments. In order to attract investors for the full-scale version, they are building an 8-foot tall proof-of-concept arm assembly capable of tossing and catching a 250lb. mass.

If you prefer to see Beetles crushed, check out Stompy, the 18-foot rideable hexapod. Make the jump to see an animation of the full-scale Bug Juggler in action. Don’t know about you, but we wouldn’t stand quite so close to it without a helmet and some really good health insurance.

Continue reading “Step Right Up or Cower In Fear; the 7-Story Car-Juggling Robot Is Here”

Stubby, The Adorable And Easy To Build Hexapod

stubby

A while back, we had a sci-fi contest on Hackaday.io. Inspired by the replicators in Stargate SG-1, [The Big One] and a few other folk decided a remote-controlled hexapod would be a great build. The contest is long over, but that doesn’t mean development stopped. Now Stubby, the replicator-inspired hexapod is complete and he looks awesome.

The first two versions suffered from underpowered servos and complex mechanics. Third time’s the charm, and version three is a lightweight robot with pretty simple mechanics able to translate and rotate along the XYZ axes. Stubby only weights about 600 grams, batteries included, so he’s surprisingly nimble as well.

The frame of the hexapod is designed to be cut with a scroll saw, much to the chagrin of anyone without a CNC machine. There are three 9g servos per leg, all controlled with a custom board featuring an ATMega1284p and an XBee interface to an old Playstation controller.

Video of Stubby below, and of course all the sources and files are available on the project site.

Continue reading “Stubby, The Adorable And Easy To Build Hexapod”

A Tiny Robot Family

tiny

Back in the late 80s and early 90s, a lot of young electronics hobbyists cut their teeth with BEAM robots – small robots made with logic chips and recycled walkmans that tore a page from papers on neural nets and the AI renaissance of the 80s. Twenty years later, a second AI renaissance never happened because a generation of genius programmers decided the best use of their mental faculties was to sell ads on the Internet. We got the Arduino, though, and the tiny robot family is a more than sufficient spiritual successor to the digital life of the old BEAM bots.

The tiny robot family is [shlonkin]’s growing collection of small autonomous vehicles that perceive the world with sensors and act with different behaviors. They all contain an ATtiny85, a small battery, two motors, and at least one phototransistor and a LED. One robot has left and right eyes pointing down, and can act as a line follower. Another has a group of LEDs around its body, allowing it to signal other bots in all directions. The goal of the project is to create a whole series of these tiny robots capable of interacting with the environment and each other. Video of the line follower below.

Continue reading “A Tiny Robot Family”