Using Robotics To Film the Perfect Hamburger Shot

It’s no secret that a lot of time, money, and effort goes into photographing and filming all that delicious food you see in advertisements. Mashed potatoes in place of ice cream, carefully arranged ingredients on subs, and perfectly golden french fries are all things you’ve seen so often that they’re taken for granted. But, those are static shots – the food is almost always just sitting on a plate. At most, you might see a chef turning a steak or searing a fillet in a commercial for a restaurant. What takes real skill – both artistic and technical – is assembling a hamburger in mid-air and getting it all in stunning 4k video.

That’s what [Steve Giralt] set out to do, and to accomplish it he had to get creative. Each component of the hamburger was suspended by rubber bands, and an Arduino timed and controlled servo system cut each rubber band just before that ingredient entered the frame. There’s even a 3D printed dual-catapult system to fling the condiments, causing them to collide in the perfect place to land in place on the burger.

Continue reading “Using Robotics To Film the Perfect Hamburger Shot”

Struggling Robot Made With DIY Soft Limbs

[Jonathan Grizou] is experimenting with robot designs, and recently stumbled upon a neat method for making soft robots. While his first prototype, a starfish like robot, doesn’t exactly “whelm” a person with it’s grace and agility, it proves the concept. Video after the break.

In this robot the frame is soft and the motor provides most of the rigidity for the structure. The soft parts of the frame have hardpoints embedded into them for mounting the motors or joining sections together. The sections are made with 3D printed molds. The molds hold the 3D printed hard points in place. Silicone is poured into the mold and left to cure overnight. The part is then demolded and is ready for use.

Continue reading “Struggling Robot Made With DIY Soft Limbs”

OpenSurgery Explores the Possibility of DIY Surgery Robots

As the many many warnings at the base of the Open Surgery website clearly state, doing your own surgery is a very bad idea. However, trying to build a surgery robot like Da Vinci to see if it can be done cheaply, is a great one.

For purely academic reasons, [Frank Kolkman] decided to see if one could build a surgery robot for less than an Arab prince spends on their daily commuter vehicle. The answer is, more-or-less, yes. Now, would anyone want to trust their precious insides to a 3D printed robot with dubious precision?  Definitely not.

The end effectors were easily purchased from a chinese seller. Forty bucks will get you a sterile robotic surgery gripper, scissor, or scalpel in neat sterile packaging. The brain of the robot is basically a 3D printer. An Arduino and a RAMPS board are the most economical way to drive a couple steppers.

The initial version of the robot proves that for around five grand it’s entirely possible to build a surgery robot. Whether or not it’s legal, safe, usable, etc. Those are all questions for another research project.

Tattoos by Robotic Arm With Pinpoint Accuracy

Tattoos are an ancient art, and as with most art, is usually the domain of human expertise. The delicate touch required takes years to master, but with the capacity for perfect accuracy and precision movements, enlisting a robotic arm and some clever software to tattoo a willing canvas is one step closer thanks to the efforts of [Pierre Emm] and [Johan da Silveira].

They began by using a 3D printer modified to ‘print’ with a tattoo needle. Catching the interest of the Applied Research Lab at Autodesk, the next logical step was to use an industrial robot arm get a human under the tattooing machine — dubbed Tatoué — after scanning the limb in question and loading it into Dynamo, their parametric design environment to map the design onto the virtual limb.

Continue reading “Tattoos by Robotic Arm With Pinpoint Accuracy”

Stick Balances Itself With Reaction Wheels

The inverted pendulum is a pretty classic dynamics problem and reaction wheels are cool. That’s why we like [Mike Rouleau]’s self-balancing stick.

The video, viewable after the break, was fairly sparse on details, but he furnished some in the comments. The little black box on the top is a GY-521 Gyroscope module. It sends its data to an Arduino attached to the black cord which trails off the screen. The Arduino does its mathemagic and then uses a motor controller to drive the reaction wheels at the correct speeds.
Continue reading “Stick Balances Itself With Reaction Wheels”

Single Motor Lets This Robot Do the Worm

With more and more research in the field of autonomous robotics, new methods of locomotion are coming on the scene at a rapid pace. Forget wheels and tracks, forget bi-, quad-, hexa- and octopods, and forget fancy rolling BB-8 clones. If you want to get a mini robot moving, maybe you should teach it to do the worm.

Neither the Gizmodo article nor the abstract of [David Zarrouk]’s paper gives too many details on the construction of this vermiform robot, but there are some clues to be gleaned from the video below. At the 1:41 mark we see the secret of the design – a long corkscrew in the center of the 3D-printed linkages.
Continue reading “Single Motor Lets This Robot Do the Worm”

Simplest Jumping Kangaroo Bot

One of the takeaway ideas that we got from BEAM robotics was the idea that the machine itself, rather than tons of processing power, can do a lot. Your hand affords gripping, and humans have made a pretty good living out of manipulating things (he says, typing). None of this is about the brain; it’s all about the mechanism.

Which brings us to the one-motor “Runner” robot. We’ll admit that we were a little bit disappointed to see that it doesn’t run so much as hop, flop, or scoot along on the two legs and that front wheel-nose. Still, it’s an awesome mechanism, and gets the locomotion job done in a very theatrical way. We’re left wondering if using two motors would allow it to steer or just flip over and flail around on its back. Going to a six “leg” design will definitely get the job done, as demonstrated by Boston Dynamics RHex robot.
Continue reading “Simplest Jumping Kangaroo Bot”