CastAR Teardown

A little more than a year ago, castAR, the augmented reality glasses with projectors and retro-reflective surfaces made it to Kickstarter. Since then we’ve seen it at Maker Faire, seen it used for visualizing 3D prints, and sat down with the latest version of the hardware. Now, one of the two people we trust to do a proper teardown finally got his developer version of the castAR.

Before [Mike] digs into the hardware, a quick refresher of how the castAR works: inside the glasses are two 720p projectors that shine an image on a piece of retroreflective fabric. This image reflects directly back to the glasses, where a pair of polarized glasses (like the kind you’ll find from a 3D TV), separate the image into left and right for each eye. Add some head tracking capabilities to the glasses, and you have a castAR.

The glasses come with a small bodypack that powers the glasses, adds two jacks for the accessory sockets, and switches the HDMI signal coming from the computer. The glasses are where the real fun starts with two cameras, two projectors, and a few very big chips. The projector itself is a huge innovation; [Jeri] is on record as saying the lens manufacturers told her the optical setup shouldn’t work.

As far as chips go, there’s an HDMI receiver and an Altera Cyclone FPGA. There’s also a neat little graphic from Asteroids on the board. Video below.

Continue reading “CastAR Teardown”

The One Million Dollar Scope Teardown

The Labmaster 10-100zi Oscilloscope is one of the fastest scopes in the world, coming in at a blistering speed of 100GHz with up to 240 Giga samples per second in real time. The scope is made by Teledyne LeCroy, and uses a frequency interleaving technology perfected by LeCroy, which allows it to provide a single 100GHz channel, or two 33GHz channels and a single 65GHz channel. The price tag? One million dollars.

[Shahriar] takes us inside the Teledyne Lecroy factory in Chestnut Ridge, NY where these scope are manufactured, and gives us the grand tour. First, an engineer describes the interleaving frequency technique that allows the lightning fast sample rates. Then they actually tear the million dollar scope down for our viewing pleasure. And if you still want more, they put it back together and run some tests to push the scope to its far reaching limits. Lastly, [Shahriar] takes us on a tour of the plant where the scopes are built.

It’s a lengthy video, so grab your favorite beverage and tuck in! It’s shocking how fast technology progresses. Just about 18 months ago [Shahriar] took us through the then reigning champion of scopes the Agilent DSA-X 96204Q which capturered 160GS/s at 62GHz.

Continue reading “The One Million Dollar Scope Teardown”

Teardown: The Android-powered iPhone Case

Cellphones! Cellphone cases! Now that Radio Shack is kaput we need to pick up the slack!

A company named Oaxis has been making cell phone cases for a while now, and they’ve recently rolled out something rather interesting – a cell phone case with an e-ink screen. It’s an interesting idea and [Anton] did a teardown on two new releases. The first one just sends an image to an e-ink screen, and on paper, that’s all the second one does as well. There’s something special hidden under the hood, though: a low-end Android system. What an age to live in.

Something interesting happened when [Anton] was futzing with the battery for the e-ink iPhone case. Somehow, the device booted into recovery mode. Android recovery mode. Yes, iPhone cases now run Android.

Inside the e-ink iPhone case, [Anton] found a board with a Rockchip RK2818 SoC. This is the same chip that can be found in cheap Android cell phones. There’s only one button on the cell phone case, and connectivity is only provided by Bluetooth LE, but the possibilities for modding a cell phone case are extremely interesting.

Hackaday Links: September 28, 2014

hackaday-links-chain

Kyocera is vastly expanding their product lineup with the Shop Sink 3530. The perfect addition to your copiers, fax machines, and laser printers.

About a year and a half ago and with objections from the editorial staff, we did a Top 10 hacking fails in movies and TV post. The number one fail is, “Stupid crime shows like NCIS, CSI, and Bones.” A new show on CBS just topped this list. It’s named Scorpion, and wow. Dropping a Cat5 cable from an airplane doing an almost-touch-and-go because something is wrong with the computers in the tower. Four million adults age 18-49 watched this.

thing[Derek] found something that really looks like the Hackaday logo in a spacer of some kind. It’s been sitting on his shelf for a few months, and is only now sending it in. He picked it up in a pile of scrap metal, and he (and we) really have no idea what this thing is. Any guesses?

[Sheldon] has a teardown of a vintage voltage and current standard. Just look at those hand drawn traces on a single sided board. Beautiful.

[Art] has another, ‘what is this thing’. He has two of them, and he’s pretty sure it’s some sort of differential, but other than that he’s got nothing. The only real clue is that [Art] lives near a harbor on the N. Cali coast. Maybe from a navigation system, or a governor from a weird diesel?

So you have a Kinect sitting on a shelf somewhere. That’s fine, we completely understand that. Here’s something: freeze yourself in carbonite. Yeah, it turns out having a depth sensor is exactly what you need to make a carbonite copy of yourself.

Exposed Clock is Flippin’ Cool

Some hacks are triumphs of cleverness, others…are just cool. [Super Cameraman’s] exposed retro flip clock tends toward the latter half of that spectrum—it may not be the most complex, but we’re relieved that for once there isn’t an Arduino crammed into the back of it.

You can buy pared down, exposed flip clocks at museums for an arm and a leg, or you can trudge through eBay and local thrift shops until you come across a cheapo clock radio. [Super Cameraman’s] clock cost him exactly $2, and is split into two sections: a clock side and a radio side. Prying off the knobs and popping open the case reveals all the shiny mechanisms and electronics, most of which he trashed. The radio and even the transformer were removed, leaving only the flip clock, which he re-wired directly to the plug—it seems these types of clocks run straight off 120VAC. Check out the video below.

Continue reading “Exposed Clock is Flippin’ Cool”

What’s Inside a USB Isolator?

Coil Die

 

In this acid powered teardown, [Lindsay] decapped a USB isolator to take a look at how the isolation worked. The decapped part is an Analog Devices ADUM4160. Analog Devices explains that the device uses their iCoupler technology, which consists of on chip transformers.

[Lindsay] followed [Ben Krasnow]’s video tutorial on how to decap chips, but replaced the nitric acid with concentrated sulphuric acid, which is a bit easier to obtain. The process involves heating the chip while applying an acid. Over time, the packaging material is dissolved leaving just the silicon. Sure enough, one of the three dies consisted of five coils that make up the isolation transformers. Each transformer has 15 windings, and the traces are only 4μm thick.

After the break, you can watch a time lapse video of the chip being eaten by hot acid. For further reading, Analog Devices has a paper on how iCoupler works [PDF warning].

[Thanks to Chris for the tip!]

Continue reading “What’s Inside a USB Isolator?”

PiFace Control & Display Tear Down

PIFace4

[John’s] currently working on a rather fun PiNoir & Santa Catcher Challenge, and one of the main components is a PiFace Control and Display, which allows you to use a Raspberry Pi without a keyboard or mouse. Curious to see how this module worked, [John] decided to do a tear down and find out!

Using a de-soldering tool he removed the 16×2 LCD which obstructs most of the components on the panel, which revealed a 16 bit SPI port expander from Microchip MCP23S17. He continued to examine components and checked values using a multimeter to come up with the following circuit diagram:

Continue reading “PiFace Control & Display Tear Down”