Do You Trust Your Cheap Fuses?

When a fuse is fitted in a power rail, it gives the peace of mind that the circuit is protected. But in the case of some cheap unbranded fuses of the type that come in kits from the usual online suppliers that trust can be illusory, as they fail to meet the required specification.

[Andreas Spiess] has used just these fuses for protection for years as no doubt have many of you, so it was something of a shock for him to discover that sometimes they don’t make the grade. He’s taken a look at the issue for himself, and come up with an accessible way to test your fuses if you have any of those cheap ones.

It’s an interesting journey into the way fuses work, as we’re reminded that the value written on the fuse isn’t the current at which it blows but the maximum it’s intended to take. The specification for fuses should have a graph showing how quickly one should blow at what currents above that level, and the worry was that this time would be simply too long for the cheap ones.

In the video below the break, he looks at the various set-ups required to test a fuse, and instead of a bank of large power supplies, he came up with a circuit involving an 18650 cell and three one ohm resistors in parallel. The resulting 1/3 ohm resistor should pass in the region of 10 A when connected across the 18650, so with a 5 A fuse in that circuit and a storage ‘scope he’s able to quickly test a few candidates. He found that the cheap fuses he had were slower to blow than a Bosch part but weren’t as worrisome as he’d at first thought. If you have any of these parts, maybe you should take a look at them too?

Continue reading “Do You Trust Your Cheap Fuses?”

Resistor Swap Gives Honda Insights More Power

A common complaint around modern passenger vehicles is that they are over-reliant on electronics, from overly complex infotainment systems to engines that can’t be fixed on one’s own due to the proprietary computer control systems. But even still, when following the circuits to their ends you’ll still ultimately find a physical piece of hardware. A group of Honda Insight owners are taking advantage of this fact to trick the computers in their cars into higher performance with little more than a handful of resistors.

The relatively simple modification to the first-generation Insight involves a shunt resistor, which lets the computer sense the amount of current being drawn from the hybrid battery and delivered to the electric motor. By changing the resistance of this passive component, the computer thinks that the motor is drawing less current and allows more power to be delivered to the drivetrain than originally intended. With the shunt resistor modified, which can be done with either a bypass resistor or a custom circuit board, the only other change is to upgrade the 100 A fuse near the battery for a larger size.

With these two modifications in place, the electric motor gets an additional 40% power boost, which is around five horsepower. But for an electric motor which can output full torque at zero RPM, this is a significant boost especially for a relatively lightweight car that’s often considered under-powered. It’s a relatively easy, inexpensive modification though which means the boost is a good value, although since these older hybrids are getting along in years the next upgrade might be a new traction battery like we’ve seen in the older Priuses.

Thanks to [Aut0l0g1c] for the tip!

A ZX Spectrum Raytracer, In BASIC

[Gabriel Gambetta] knows a few things about ray tracers, being the author of Tiny Raytracer, a raytracer written in just 912 bytes of JavaScript. As a long-time fellow sufferer of the UK-designed ZX Spectrum, could these two love affairs be merged? Could the Tiny Raytracer fit on the ZX Spectrum? In BASIC? The answer is an affirmative, albeit with our beloved speccy’s many limitations.

Ray tracing with only 15 primary colours

The story starts with [Gabriel]’s Computer Graphics From Scratch (CGFS) raytracer algorithms and an existing code base that was ported to the ZX Spectrum’s very limited BASIC dialect, using VSCode for editing, BAS2TAP to generate a tape image file (essentially an audio track) and executed with FUSE. With the toolchain sorted, [Gabriel] adds just enough code to deal with the ray intersection equations of a sphere, and renders a three-sphere scene to a 32×22 pixel colour image, taking a mere 15 minutes of runtime. Fellow sufferers will remember the spectrum had a 32×22 block attribute array (or colour array) with two colour values for foreground and background pixels. Each attribute block contains 8×8 pixels, each of which could be foreground (on) or background (off.) The next stage was then to expand the code to handle pixels as well as blocks, by simply expanding the raytracing to the full 256×176 resolution, and for each block simply determine the two most common colours, and run with those for the whole block. It sort of works, in a very spectrum-esq ‘attribute clash’ kind of fashion.

Continue reading “A ZX Spectrum Raytracer, In BASIC

Just How Dodgy Are Cheap USB Chargers Anyway?

Aside from apparently having both the ability to reproduce on their own and simultaneously never being around when you need one, USB chargers seem innocuous enough. The specs are simple: convert mains voltage to 5 volts, and don’t kill anyone while doing it. Both specs are typically met by most designs, but judging by [DiodeGoneWild]’s latest USB charger teardown, the latter only just barely, and with a whole lot of luck.

The sad state of plug-in USB power supplies is one of [DiodeGoneWild]’s pet gripes, and deservedly so. Most USB chargers cram a lot of electronics into a mighty small volume, and are built to a price point, meaning that something has to give in the design. In the case of the two units he tears apart in the video below, it’s pretty clear where the compromises are. Neither unit met the specs on the label in terms of current supplied and voltage regulation, even the apparently more capable quick charger, which is the first to go under the knife. The PCB within holds some alarming surprises, like the minimal physical isolation between the mains part of the circuit and the low-voltage section, but the real treat is the Schottky diode that gets up to 170°C under full load. Safety tip: when you smell plastic burning, throw the thing out.

The second charger didn’t fare any better; although it didn’t overheat, that’s mainly because it shut itself off before it could deliver a fraction of its rated 1 amp output. The PCB construction was shoddy in the extreme, with a squiggly trace standing in for a proper fuse and a fraction of a millimeter separation between primary and secondary traces. The flyback transformer was a treat, too; who doesn’t want to rely on a whisper-thin layer of cheap lacquer to keep mains voltage out of your phone?

All in all, these designs are horrible, and we have to thank [DiodeGoneWild] for the nightmares we’ll have whenever we plug into one of these things from now on. On the other hand, this was a great introduction to switch-mode power supply designs, and what not to do with our own builds. Continue reading “Just How Dodgy Are Cheap USB Chargers Anyway?”

Bypassing Bitlocker With A Logic Analzyer

Security Engineer [Guillaume Quéré] spends the day penetration testing systems for their employer and has pointed out and successfully exploited a rather obvious weakness in the BitLocker full volume encryption system, which as the linked article says, allows one to simply sniff the traffic between the discrete TPM chip and CPU via an SPI bus. The way Bitlocker works is to use a private key stored in the TPM chip to encrypt the full volume key that in turn was used to encrypt the volume data. This is all done by low-level device drivers in the Windows kernel and is transparent to the user.

TPM chip pins too small? Just find something else on the bus!

The whole point of BitLocker was to prevent access to data on the secured volume in the event of a physical device theft or loss. Simply pulling the drive and dropping it into a non-secured machine or some other adaptor would not provide any data without the key stored by the TPM. However, since that key must pass as plaintext from the TPM to the CPU during the boot sequence, [Guillaume] shows that it is quite straightforward — with very low-cost tools and free software — to simply locate and sniff out this TPM-to-CPU transaction and decode the datastream and locate the key. Using little more than a cheapo logic analyser hooked up to some conveniently large pins on a nearby flash chip (because the SCK, MISO, and MOSI pins are shared with the TPM) the simple TIS was decoded enough to lock onto the bytes of the TPM frame. This could then be decoded with a TPM stream decoder web app, courtesy of the TPM2-software community group. The command to look for is the TPM_CC.Unseal which is the request from the CPU to the TPM to send over that key we’re interested in. After that just grabbing and decoding the TPM response frame will immediately reveal the goods.

Continue reading “Bypassing Bitlocker With A Logic Analzyer”

A Fuse Is Just A Fuse, Right?

We like to think that most common electronic components are essentially commodity items. We don´t buy premium wire or resistors. You just assume these electronic components are more or less the same from anywhere unless you need some very special characteristics. What about fuses? We would assume they are all essentially the same, but [Ham Radio A2Z] says he’s throwing away his generic fuses after he found they didn’t work as he would expect.

Of course, name-brand fuses are tested to very specific tests, and you get to see the plots of how the fuses are supposed to melt for Bussmann fuses. Then he takes out a generic assortment of fuses he bought at a hamfest. No Bussmann fuses in that batch!

Comparing the generic fuses with some from Bussmann and Littlefuse, they all work fine to carry current. That isn’t the problem. The problem is when you feed the fuses 20 A and expect them to clear. A 5 A generic fuse carried over 20 A for a very long time, and, as you might expect, it got very hot. We kept waiting for the fuse to blow, but after three minutes, he gave up.

For comparison, a 10 A Bussmann fuse in the same conditions blew almost immediately — about 350 milliseconds. None of the generic fuses blew, and, in fact, the fuse in the video had been subjected to 20 A of over-stress several times already. It seems like it is nearly impossible to blow them at that current level despite it being four times the marked current. Not much of a bargain.

As the video points out, fuses aren’t as much to protect your equipment as much as they are to prevent fires, so don’t forget to include them even on simple projects. Remember the TI 99/4A? The power supply for that vintage computer has an odd little box in the power cable very near the plug. Why? Because they forgot to put a fuse in until the UL reminded them.

Continue reading “A Fuse Is Just A Fuse, Right?”

Retrotechtacular: A Closer Look At The VT Proximity Fuze

Here at Hackaday, our aim is to bring you only the freshest of hacks, which carries the burden of being Johnny-on-the-spot with our source material. So if something of obvious interest to our readers goes viral, we might just choose to skip covering it ourselves, figuring you all have probably seen it already. But, if we can dig a little deeper and bring extra value over and above what the viral content provides — well then that’s another story.

That’s pretty much the story behind the excellent video recently released by [Real Engineering] about “The Secret Weapon That Changed World War 2.” It concerns the VT series of proximity fuzes — it’s a legitimate alternate spelling of “fuse” if a somewhat archaic one — that were used for artillery shells and spin-stabilized rockets in World War II. The video gives an excellent overview of the development of the VT, which was used primarily in anti-aircraft artillery (AAA). The details about the development of the American VT fuze are excellent, although curiously there’s no mention that British experiments with a radio proximity fuze were part of the goldmine of information brought to America at great risk by the Tizard mission in 1940. While there has been plenty of contention about the exact role the British work played, it’s fair to say that it at least informed the development and fielding of the American VT fuze.

Continue reading “Retrotechtacular: A Closer Look At The VT Proximity Fuze”