Learn And Build A High Side Switch

As electronics engineer I have a mental collection of circuits that I’ve gathered over the years, much like a mechanic collects specialized tools as they work. All engineers do this and the tools in their tool boxes usually represent their project history and breadth.

A useful circuit to have in designer’s toolbox is the “high side switch”. Like it sounds, this is a circuit that switches the “high side” or positive voltage to a load.

We usually tend to switch things to ground as seen by outputs such as an Open Collector output, the reason being that ground usually is a known entity and is usually low impedance and is at a known voltage. But there are advantages to using a high-side switch in your circuits.

Continue reading “Learn And Build A High Side Switch”

Hack Your Rib Cage With Titanium 3D Printing

A Spanish hospital recently replaced a significant amount of a man’s rib cage and sternum with a titanium replacement. Putting titanium inside people’s chests is nothing new, but what made this different was the implant was 3D printed to match his existing bone structure.

An Australian company, Anatomics, created the 3D print from high-resolution CT scans of the patient. They used a printer provided by an Australian Government corporate entity, CSIRO, that helps bring technology to Australian companies.

Biomedical printing has been in the news quite a bit lately and we’ve covered CT scan to 3D model conversions more than once. Is this the dawn of the age of the cyborg? Maybe it’s really mid morning. Many people walk around with pacemakers, Vagus nerve stimulators, and plenty of more conventional titanium hardware in them now.

While the ethics of replacing a cancer patient’s rib cage is pretty clear, the real issue will be when people want enhancements just for the sake of it (think of the controversy surrounding runners with prosthetic legs, for example). It might seem far-fetched, but as replacements become better than originals, some people will want to opt for replacements for perfectly good body parts.

Continue reading “Hack Your Rib Cage With Titanium 3D Printing”

Don’t Understand The Periodic Table? It’s Just A Quantum Truth Table

In the wee hours of the late 17th century, Isaac Newton could be found locked up in his laboratory prodding the secrets of nature. Giant plumes of green smoke poured from cauldrons of all shapes and sizes, while others hissed  and spat new and mysterious chemical concoctions, like miniature volcanoes erupting with knowledge from the unknown. Under the eerie glow of twinkling candle light, Newton would go on to write over a million words on the subject of alchemy. He had to do so in secret because the practice was frowned upon at that time.  In fact, it is now known that alchemy was the ‘science’ in which he was chiefly interested in. His fascination with turning lead into gold via the elusive philosopher’s stone is now evident. He had even turned down a professorship at Cambridge and instead opted for England’s Director of Mint, where he oversaw his nation’s gold repository.

Not much was known about the fundamental structure of matter in Newton’s time. The first version of the periodic table would not come along for more than a hundred and forty years after his death. With the modern atomic structure not surfacing for another 30 years after that. Today, we know that we can’t turn lead into gold without setting the world on fire. Alchemy is recognized as a pseudoscience, and we opt for modern chemistry to describe the interactions between the elements. Everyone walking out of high school knows what atoms and the periodic table are. They know what the sub-atomic particles and their associated electric charges are. In this article, we’re going to push beyond the basics. We’re going to look at atomic structure from a quantum mechanical view, which will give you a new understanding of why the periodic table looks the way it does. In fact, you can construct the entire periodic table using nothing but the quantum numbers.

Continue reading “Don’t Understand The Periodic Table? It’s Just A Quantum Truth Table”

A DIY Mobile Soldering Iron

Cordless soldering irons are, as a rule, terrible. A few months ago, you could pick up a cordless soldering iron from Radio Shack that was powered by AAA batteries. You can guess how well those worked. There are butane-fueled soldering irons out there that will heat up, but then you’re left without the requisite degree of temperature control.

[Xavier] didn’t want to compromise on a mobile soldering iron, so he made a desktop version portable. His mobile temperature controlled soldering iron uses the same electronics that are found in inexpensive Hakko clones, and is powered by a LiPo battery.

The soldering station controller comes directly from eBay, and a DC/DC boost converter accepts just about any DC power supply – including an XT60 connector for LiPo cells. A standard Hakko 907 iron plugs into the front, and a laser cut MDF enclosure makes everything look great. There were a few modifications to the soldering station controller that involved moving the buttons and temperature display, but this build really is as simple as wiring a few modules together.

With an off-the-shelf LiPo battery, the iron heats up fast, and it doesn’t have a long extension cord to trip over. With the right adapter, [Xavier] can use this soldering station directly from a car’s cigarette power port, a great feature that will be welcomed by anyone who has ever worked on the wiring in a car.

Continue reading “A DIY Mobile Soldering Iron”

9th Grader Arrested, Searched For Building A Clock

A 14-year-old in Dallas, Texas has been arrested for bringing a clock to his school. [Ahmed Mohamed] could be any one of us. He’s a tinkerer, pulling apart scrap appliances and building projects from the parts. He was a member of the his middle school robotics team. The clock was built from a standard four digit seven segment display and a circuit board. [Ahmed] built the circuit inside a Vaultz hard pencil case like this one. He then did what every other experimenter, inventor, hacker, or maker before him has done: He showed off his creation.

Unfortunately for [Ahmed] one of his teachers immediately leapt to the conclusion that this electronic project was a “hoax bomb” of some sort. The police were called, [Ahmed] was pulled out of class and arrested. He was then brought to a detention center where he and his possessions were searched. [Ahmed] is now serving a three-day suspension from school. His clock is considered evidence to be used in a possible criminal case against him.

If this situation doesn’t get your blood boiling, then we don’t know what does. Not only is there a glaring racial issue here, but also an issue of allowing kids to bring their projects to school. We hope you’ll join us in expressing outrage at this whole debacle, as well as supporting [Ahmed] in any way you can. Let’s join together as a community to make sure a few small-minded individuals don’t break the spirit of this budding hardware hacker.

For anyone out there who would like to support [Ahmed]’s education even when his school won’t, [Anil Dash] is will be in contact with the family later today. We’re offering a gift card for the hackaday store and we would assume other contributions would also be welcome. -Ed.

Continue reading “9th Grader Arrested, Searched For Building A Clock”

Hackaday Prize Semifinalist: A Full-Stack IoT Platform

There are millions of devices and sensors connected to the Internet, and the next decade will bring billions more. How will anyone keep track of all these sensors? With analog.io, a platform for IoT devices, and [Luke]’s entry for The Hackaday Prize.

The problem of aggregating data from an Internet of things has been tackled before. Last year, Sparkfun released data.sparkfun.com, built on Phant, a tool for collecting data from the Internet of Things. Even though Phant can collect the data, it only does this in neat columns with values and time stamps. To turn this into something a little more visual, analog.io was born. In the future, [Luke] will add support for thingspeak and Xively data streams; the entire project is intended to be backend agnostic, allowing anyone to get their data from any thing, store it on any server, and connect it to analog.io for visualization and sharing.

Graphing data provides for some interesting opportunities, like when [Luke] found his Internet-connected water meter was logging far, far too much water consumption. A fitting on a garden hose came loose, and the hose started pouring water onto the ground, a foot away from his basement wall. That’s a swimming pool’s worth of water on [Luke]’s foundation, easily and readily graphed. He’s now adding an alert feature to analog.io.

Graphing data does present its own problems, like when a sensor sends a single erroneous data point. [Luke] is calling this a ‘burr’, and analog.io can filter out these small spikes that make data unreadable as a graph. There’s a lot of work that goes into making a usable graph, and [Luke] is crossing all his ‘t’s and dotting all his lowercase ‘j’s.

While many of the entries for the Hackaday Prize are running at the ground level with individual sensors connected to the Internet, [Luke]’s project tackles the Internet of Things problem from the other end, providing everyone a way to easily visualize their data. It’s a great Hackaday Prize entry, and will surely come in useful for a number of other prize entries as well.

The 2015 Hackaday Prize is sponsored by:

Rubik’s Solver Uses FAC Machine Building System

We love a good Rubik’s Cube solver and the mechanical engineering on this one is both elegant and functional.

This is the first time we remember hearing about the FAC system, which is a standard set of parts which can be used to make any number of mechanical systems. [Wilbert Swinkels] must be a master with the system; the layout of the machine appears simple and uncrowded despite the multiple degrees of freedom built into it. Those include an insertion platform for getting the cube in and out, a gantry for three color sensors, and two axes (three grippers in all) for doing the actual solving. If you’ve used FAC before we want to hear what you think of it in the comments.

[Maxim Tsoy] handled the software which runs on a Rapsberry Pi Compute module. You’ll want to watch the demo video below. First you place the randomized cube on the insertion platform which retracts after the cube is in the grasp of the grippers. These work in conjunction with the color sensor gantry to scan every side of the cube. After a brief pause to compute the solution the grippers go to work.

It is possible to build a solver with just two swiveling grippers. Here’s a really fast way to do it.

Continue reading “Rubik’s Solver Uses FAC Machine Building System”