Tracking Your Run Over The Long Haul

The rise of smartphone and smartwatch fitness tracking has been an absolute boon for anyone interested in tracking their runs. However, it all falls short when you need a custom feature and start getting into serious long distance running, as most smartphone batteries simply won’t last. While there are devices out there for the ultra-running enthusiast, [Ivor Hewitt] decided he wasn’t willing to pay a monthly subscription for the pricy trackers or deal with the hassle of the generic cheap versions, and decided to roll his own.

The key pieces of this project are the A9G GPS module and the RDA8955 GRS/GPRS module. They’re both incredibly small and power efficient, perfect for a project that needs to be worn on your person with a long battery life. As an added bonus, the RDA8955 also includes a SoC that’s user-programmable. After battling the lackluster documentation and tooling, [Ivor] managed to get some software running on his new system. A power bug on the A9G GPS module was potentially show stopping, but thanks to some help by folks in the community, it was diagnosed and solved.

Further additions included adding a proper charging circuit (TP4056) and a beefy 2600 mAh battery scavenged from a Sony smartphone, giving the compact system around 38 hours of active battery life. An OLED screen was added to show upcoming aid stations and overall system status, driven by a custom display library. A snazzy translucent case makes the whole device slim and easy to carry. Now at the end of a long race or training session, [Ivor] has a wealth of tracked points that has already been uploaded to his own tracking website and a fully charged phone.

Next time you’re looking for a small compact GPS tracker or cellular logger take a look at this project’s code on GitHub or the A9G and RDA8955 modules.

Thanks [Ivor] for sending this one in!

Build A Sprint Race Timer To Help Your Training

Any exercise is a positive thing, but if you’re looking to improve over time, you’ve got to measure your performance. [Nikodem Bartnik] is a runner and is looking to improve his sprinting abilities. Naturally, an Arduino is the perfect companion to help in this quest (YouTube link, embedded below).

The Arduino is built into a 3D printed enclosure, with several buttons for input. Rather unconventionally, a small e-paper display was chosen for the interface. This has the benefits of being easily readable outdoors during the day, as well as using very little power.

The device is simple to use, and makes training alone a breeze. The distance to be run can be selected, and the unit emits a series of beeps to indicate to the runner when to begin. The timer is placed at the finish line, and detects the runner passing by with an ultrasonic sensor.

It’s a useful build for sprint timing, and could be made even more versatile with a remote start function. If you need to time Hot Wheels instead of sprinters, don’t worry – there’s a build for you too. Video after the break.

Continue reading “Build A Sprint Race Timer To Help Your Training”

“Look Ma, No Gyros!”: A Self-Balancing Mechanical Velociraptor

You’ve got to walk before you can run, right? Perhaps not, if this bipedal dino-like running robot is any indication.

Officially dubbed a “Planar Elliptical Runner,” the bot is a test platform for bipedal locomotion from the Institute for Human and Machine Cognition. Taking inspiration from the gait of an ostrich — we think it looks more like a T. rex or velociraptor, but same difference — [Jerry Pratt]’s team at IHMC have built something pretty remarkable. Contrary to all the bipedal and quadrupedal robots we’ve seen, like Boston Dynamics’ Big Dog and PETMAN, which all fairly bristle with sensors and actuators, the PER is very stripped down.

A single motor runs the entire drive chain using linkages that will look familiar to anyone who has taken an elliptical trainer apart, and there’s not a computer or sensor on board. The PER keeps its balance by what the team calls “reactive resilience”: torsion springs between the drive sprocket and cranks automatically modulate the power to both the landing leg and the swing leg to confer stability during a run. The video below shows this well if you single-frame it starting at 2:03; note the variable angles of the crank arms as the robot works through its stride.

The treadmill tests are constrained by a couple of plastic sheets, but the next version will run free. It’s not clear yet how directional control will be achieved, not is it obvious how the PER will be able to stop running and keep its balance. But it’s an interesting advance in locomotion and we look forward to seeing what IHMC’s next trick will be.

Continue reading ““Look Ma, No Gyros!”: A Self-Balancing Mechanical Velociraptor”

Line Following Robot Trains Runners

Can your line following robot move faster than [Usain Bolt] who has been described as “The World’s Fastest Timed Human”? Puma, the athletic footwear, apparel and accessories company, created such a robot to help train their company sponsored athletes.

The shoebox-sized robot exceeds [Bolt]’s top speed of 44-km/hour. At that speed, following a line gets tricky. It took the development team 8 prototypes to attain that capability. Inside the BeatBot an Arduino reads 9 infrared sensors for line detection at 100 samples a second. A digital servo controls the Ackerman steering mechanism to follow the line on the track or floor. Wheel encoders provide the data for speed and distance measurement.

The user can set the distance of the run and the time to beat. Run pacing can also be adjusted. LEDs on the robot provide the starting ‘gun’ and help the runner see the BeatBot using peripheral vision. Two GoPro cameras, front and rear, provide a visual record of the run.

Puma believes that actually running against a competitor, even a robot, improves performance more than just running against the clock. They’re betting a grown-up line follower will help Olympic class athletes improve their performance. Continue reading “Line Following Robot Trains Runners”

A Simple Runner’s GPS Logger

[Daniel] received a grant from the University of Minnesota’s ECE Envision Fund and was thus responsible for creating something. He built a runner’s GPS logger, complete with a screen that will show a runner the current distance travelled, the time taken to travel that distance, and nothing else. No start/stop, no pause, nothing. Think of it as a stripped-down GPS logger, a perfect example of a minimum viable product, and a great introduction to getting maps onto a screen with an ARM micro.

The build consists of an LPC1178 ARM Cortex M3 microcontroller, a display, GPS unit, and a battery with not much else stuffed into the CNC milled case. The maps come from OpenStreetMap and are stored on a microSD card. Most of the files are available on GitHub, and the files for the case design will be uploaded shortly.

The CNC machine [Daniel] used to create the enclosure is a work of art unto itself. We featured it last year, and it’s good enough to do PCBs with 10 mil traces. Excellent work, although with that ability, we’re wondering why the PCB for the Runner’s GPS is OSH Park purple.

Couch To 5K With 1K To Spare

In a market full of Fitbits, Misfits, and Fuelbands, it’s easy to get carried away with sophisticated personal fitness tracking technology.  That’s why [André] took a totally different approach with his super simple run tracking device, the C25K machine.

C25K stands for “Couch to 5k” which is a slimmed down exercise schedule designed to gradually bring people who have otherwise no exercise routine up to a level of fitness where they can run a 5k in just 9 weeks.  To keep participants from wearing themselves out too early, the routine specifies a sequence of running and walking periods to be completed in series on specific days.  Though simpler than most fitness plans, it’s still a lot to keep track of especially when you’re sweating so hard you can barely see your stopwatch.

André found a solution using a bare-bones circuit based on the ATTiny2313.  After loading the C25k calendar into its firmware (which takes up less than half of its 2K of flash), he needs only to toggle the dipswitch to select the appropriate day of the program, and the little device (scarcely larger than a key fob) will beep to let him know to switch from running to walking or back again.

Definitely a great project for any hobbyist looking for a geeky way to get in shape.

Rebecca Black Running Accessory Also Promotes Running For Everyone Within Earshot

Last Friday, Friday we caught wind of [gvillenave]’s running accessory inspired by Rebecca Black, and we we we so excited, we so excited to bring this to you on Saturday, which comes after Friday.

[gvillenave] came up with the idea of using a song on the annoyance level of “Friday” to encourage a runner into keeping up a good pace. The concept is simple: if the wearer is running fast, the song will speed up. If the wearer is slowing down, the song will slow down and extend the agony.

The build uses an Arduino and [ladyada]’s wave shield coupled to an accelerometer. [gvillenave] included the code, and also wired up some LEDs to a pair of sunglasses that blink more often as the runner’s speed increases. The wave shield has a 3.5mm jack for headphones, but [gvillenave] graciously wired a speaker in, “so that you can annoy people around you, and not just yourself.” All this is packaged in a very nice 3D printed enclosure making for a great looking project.

There’s no word on the effectiveness of the negative reinforcement aspect of [gvillenave]’s build, but we suspect it will help her get down to the bus stop a little faster every morning.