GaN Charger Teardown Reveals Value Of This New Technology

Every so often, a new technology comes along that offers a broad range of benefits over what we already have. Just as lithium-ion batteries have made nickel-cadmium cells boring and old hat, gallium nitride semiconductors are making silicon parts look unimpressive by comparison. [Brian Dipert] looked at what this means in a practical sense by tearing down a GaN phone charger.

The charger in question is a 30 watt USB-C charger produced by Voltme. It cost [Brian] just $10, as prices of GaN hardware have come down significantly as economies of scale have kicked in. The charger measures just 1.2×1.3×1.2 inches, and weighs only 1.5 ounces. That compact size is thanks to GaN semiconductors, which are able to run cooler at higher power levels than their silicon forebearers.

Cracking into the charger required levering open the case. The back panel came off with some work, revealing the mains terminals, which deliver AC power to the PCB inside via the case holding them in contact. Interestingly, the entire circuit inside is filled with an adhesive thermal goop, which helps pass heat from the hottest components to the charger’s case. [Brian] is able to guide us through the circuit, and he identified many of the major components. However, some of the markings on chips were beyond his research skills, and he asks any knowing readers to contribute their own information.

It’s interesting to see just what makes the high-powered compact chargers of today tick. Plus, it’s a hallmark of progress that what was once considered a wonder material can now be had in a $10 commodity phone charger from Amazon. How times change!

This Week In Security: Macstealer, 3CX Carnage, And Github’s Lost Key

There’s a naming overload here, as two bits of security news this week are using the “MacStealer” moniker. We’re first going to talk about the WiFi vulnerability, also known as Framing Frames (pdf). The WPA encryption schemes introduced pairwise encryption, ensuring that not even other authenticated users can sniff each others’ traffic. At least that’s the idea, but this attack finds a couple techniques to bypass that protection.

A bit more background, there are a couple ways that packets can be delayed at the sender side. One of those is the power-save message, that signals the access point that the given client is going into a low power state. “Hold my calls, I’m going to sleep.” That message is a single bit in a frame header. And notably, that bit isn’t covered by WPA encryption or verification. An attacker can send a message, spoof a victim’s MAC address, and the access point marks that client as being in power-save mode.

This observation leads to a question: What happens when the encryption details change between the packet joining the queue, and actually transmitting? Turns out, the specifications on WiFi encryption don’t spell it out, and some implementations do the last thing you’d want, like sending the packets in the clear. Whoops. This behavior was the case in the Linux kernel through version 5.5.0, but starting with 5.6.0, the buffered packets were simply dropped when the encryption key was unavailable. Continue reading “This Week In Security: Macstealer, 3CX Carnage, And Github’s Lost Key”

Archiving The Entirety Of DPReview Before It’s Gone

Despite the popular adage about everything on the internet being there forever, every day pages of information and sometimes entire websites are lost to the sands of time. With the imminent shutdown of the DPReview website, nearly 25 years of reviews and specifications of cameras and related content are at risk of vanishing. Also lost will be the content of forum posts, which can still be requested from DPReview staff until April 6th. All because the owner of the site, Amazon, is looking to cut costs.

As announced on r/photography, the Archive.org team is busy trying to download as much of the site as possible, but due to bottlenecks may not finish in time. One way around these bottlenecks is what is called the Archive Team Warrior, which involves either a virtual machine or Docker image that runs on distributed systems. In early April an archiving run using these distributed systems is planned, in a last-ditch attempt to retain as much of theĀ  decades of content.

The thus archived content will be made available in the WARC (Web ARChive) format, in order to retain as much information as possible, including meta data and different versions of content.

Could 1080p Video Output From The RP2040 Be Possible?

Modern microcontrollers often have specs comparable with or exceeding early gaming consoles. However, where they tend to fall short is in the video department, due to their lack of dedicated graphics hardware. With some nifty coding, though, great things can be achievedĀ  — as demonstrated by [TEC_IST]’s project that gets the RP2040 outputting 1080p video over HDMI.

The project builds on earlier work that saw the RP2040 outputting digital video over DVI. [TEC_IST] realized that earlier methods already used up 30% of the chip’s processing power just to reach 320×240 output. To get to 1080p resolution would require a different tack. The idea involved using the 32-bit architecture of the RP2040 to output a greater data rate to suit the higher resolution. The RP2040 can do a 32-bit move instruction in a single clock cycle, which, with 30 GPIO pins, would be capable of a data rate of 3.99 Gbits/second at the normal 133 MHz clock speed. That’s more than enough for 1080p at 60 Hz with a 24-bit color depth.

Due to the limitations of the chip, though, some extra hardware would be required. [TEC_IST] has drawn up a design that uses external RAM as a framebuffer, while using shift registers and other supporting logic to handle dumping out signals over HDMI. This would just leave the RP2040 to handle drawing new content, without having to redraw existing content every frame.

[TEC_IST] has shared the design for a potential 1080p HDMI output board for the RP2040 on GitHub and is inviting comment from the broader community. They’re yet to be built and tested, so it’s all theoretical at this stage. Obviously, a lot of heavy lifting is being done off-board the microcontroller here, but it’s still fun to think of such a humble chip doing such heavy-duty video output. Continue reading “Could 1080p Video Output From The RP2040 Be Possible?”