3D Printing On A Spinning Rod

FDM 3D printing traditionally operates on a layer-by-layer basis, using a flat bed to construct parts. However, [Humphrey Wittingtonsworth IV] demonstrates in his video how this process can be significantly enhanced in terms of mechanical strength and print speed by experimenting with printing on a rotating rod instead of the standard flat bed.

[Humphrey] modified a Creality CR-10 3D printer by removing the bed and installing a regular 8mm linear rod under the hotend. The rod is rotated by a stepper motor with a 3:1 belt drive. This lets him use the rod as the printing surface, laying down layers axially along the length of an object. This means parts that can stand up to bending forces much better than their upright-printed counterparts.

Additionally, this rotational action allows for printing functional coil and wave springs – even multi-layer ones – something that’s not exactly feasible with your run-of-the-mill printer. It can also create super smooth and precise threads as the print head follows their path. As an added bonus – it could also speed up your printing process as you’re just spinning a slim rod instead of slinging around an entire bed. So cylindrical parts like tubes and discs could be printed almost as quickly as your hotend can melt filament.

Of course, this approach isn’t without its challenges. It works best for cylindrical components and there’s a limit to how small you can go with inner diameters based on your chosen rod size. Then there’s also the task of freeing your prints from their rod once they’re finished. [Humphrey] addressed this by creating mesh sleeves that snugly fit over his center rod. This limits how much melted plastic can adhere to it, making removal a breeze.

Continue reading “3D Printing On A Spinning Rod”

Math Book Gets Real With Complex

The [Math Sorcerer] loves books. His latest acquisition is the famous Real and Complex Analysis, which is a very stout math book.  How stout? Well, there are several chapters on holomorphic functions, including how to do a Fourier transform on such a function. There’s also an appendix about Hausdorff’s maximality theorem. What are those? Beats us; read the book. You can also watch the short video review of the text below.

The author asserts right up front that the exponential function is “undoubtedly the most important function in mathematics.” Undoubtedly. [The Math Sorcerer’s] videos remind us of browsing a bookstore or a library. You don’t get a book summary as much as a preview of what’s in it, so you can decide if you want to read it.

Continue reading “Math Book Gets Real With Complex”

Hackaday Links Column Banner

Hackaday Links: October 22, 2023

The second of three major solar eclipses in a mere six-year period swept across the United States last week. We managed to catch the first one back in 2017, and still have plans for the next one in April of 2024. But we gave this one a miss, mainly because it was “just” an annular eclipse, promising a less spectacular presentation than a total eclipse.

Looks like we were wrong about that, at least judging by photographs of last week’s “Ring of Fire” eclipse. NASA managed to catch a shot of the Moon’s shadow over the middle of the US from the Deep Space Climate Observer at Lagrange Point 1. The image, which shows both the compact central umbra of the shadow and the much larger penumbra, which covers almost the entire continent, is equal parts fascinating and terrifying. Ground-based photographers were very much in the action too, turning in some lovely shots of the eclipse. We particularly like this “one-in-a-million” shot of a jet airliner photobombing the developing eclipse. Shots like these make us feel like it was a mistake to skip the 10-hour drive to the path of annularity.

Continue reading “Hackaday Links: October 22, 2023”

Antique Motherboard Speaks

[Bits und Bolts] has been restoring an old PC motherboard with the infamous bad electrolytic capacitors. The video of his exploits was interesting enough, but pretty standard stuff. What we found interesting though, was an odd feature of the ASUS Bios called “Post Reporter” that let the motherboard speak error codes and status through the external speaker. (Video, embedded below.) We aren’t sure who wanted that, and since we haven’t seen it around lately, we are guessing the answer was nobody wanted it.

We enjoyed watching the PCB rework. Those large internal ground plane layers do make it hard to unsolder and then solder the caps. That makes the job seem deceptively easy. However, if you want to skip to the exotic BIOS, jump to the 8:20 mark.

Continue reading “Antique Motherboard Speaks”

Adobe Scientist Cuts A Dash With LCD Shifting Dress

Adobe research scientist [Christine Dierk] showed off an interesting new project at the Adobe Max conference: Project Primrose, a dress covered with a series of liquid crystal panels that could react to movement, changing the design of the dress. Now, Adobe has released a paper showing some of the technical details of the process.

The paper is from the User Interface & Software (UIST) conference in 2022, so the examples it uses are older: it discusses a canvas and handbag. The dress uses the same technology, though, draped over a scientist rather than a frame. If you can’t access the version from UIST, [Dierk] has a free version here.

The dress uses Polymer-dispersed Liquid Crystal (PDLC) panels from the wonderfully named Shanghai HO HO Industry Co and is designed for use in windows and doors for privacy. It uses an Indium Tin oxide-coated PET film that is opaque by default but becomes transparent when a voltage difference is applied across the material.

These panels are shaped to a hexagonal shape, then wired together with flexible PCBs in a daisy chain. Interestingly, [Dierk] found that the smaller the panels were made, the lower the voltage was required to trigger them. For their canvas example, they dropped the voltage to a much safer -15V to 15V levels to trigger the two states, which is much safer for a wearable device.

The panels are also not completely transparent when triggered: the paper describes them as having a “soft ivory” look when they are overlaying a reflective material. Greyscales can also be made using Pulse Coded Modulation (PCM) to vary the panel’s transparency. Driving the panels at 3.2KHz, they created 64 shades of grey.

The main controller is a custom PCB with a Teensy 4.1 and a BlueFruit LE SPI module. The power comes from two 14.8V LiPo batteries, with converters to power the chips and switch modules so the Teensy can switch the -15 and +15V levels for the panels directly from each battery.

The array is made from modules, each with four panels connected to a controller PCB, which has several Analog Signal Device (ASD) ADG1414 chips. These receive the signals from the bus with switch registers to switch the panels individually.

Rather cleverly, [Dierk] uses the bus that daisy chains the modules together to deliver both power and the bus signal that controls the panels, using the -15 and +15V levels modulated with a 50Hz square wave to create the bus signal and power the panels at the same time. That’s a neat hack that reduces the complexity of the modules significantly.

The Teensy 4.1 controls the whole system and can use its IMU to sense movement and change the pattern accordingly. You don’t get to see the system’s electronics in the dress video, but they claim that the canvas example took just 0.58 Watts to drive, so the dress probably only needs a few watts.

It is a fascinating build (and a rather cute dress), and has a lot of potential. What would you do with this?

Continue reading “Adobe Scientist Cuts A Dash With LCD Shifting Dress”

NASA JPL’s Voyager Team Is Patching Up Both Voyagers’ Firmware

It’s not every day that you get to update the firmware on a device that was produced in the 1970s, and rarely is said device well beyond the boundaries of our solar system. This is however exactly what the JPL team in charge of the Voyager 1 & 2 missions are facing, as they are in the process of sending fresh firmware patches over to these amazing feats of engineering. These patches should address not only the attitude articulation and control system (AACS) issues that interrupted Voyager 1’s communication with Earth a while ago, but also prevent the thruster propellant inlet tubes from getting clogged up as quickly.

Voyager 2 is the current testbed for these patches, just in case something should go wrong despite months of Earth-based checking, testing and validation. As Voyager 1 is the furthest from Earth, its scientific data is the more valuable, but ideally neither spacecraft should come out worse for wear after this maintenance session.

The AACS fixes are more of an insurance policy, as the original cause of the issue was found to be that the AACS had entered into an incorrect mode, yet without a clear understanding of how this could have happened. With these changes in place, recovery should be much easier. Similarly, the changes to the use of the thrusters are relatively minor, in that they will mostly let the spacecraft drift a bit more out of focus before the thrusters engage, reducing total thruster firings and thus the build-up of material in these inlet tubes.

With these changes the antennae of both spacecraft should remain trimmed firmly towards the blue planet which they left over forty-five years ago, and enable them to hopefully reach that full half century mark before those of us who are still listening have to say our final farewells.

Custom Fume Hood For Safe Electroless Plating

There are plenty of chemical processes that happen commonly around the house that, if we’re really following safety protocols to the letter, should be done in a fume hood. Most of us will have had that experience with soldering various electronics, especially if we’re not exactly sure where the solder came from or how old it is. For [John]’s electroless plating process, though, he definitely can’t straddle that line and went about building a fume hood to vent some of the more harmful gasses out of a window.

This fume hood is pretty straightforward and doesn’t have a few of the bells and whistles found in commercial offerings, but this process doesn’t really require things like scrubbing or filtering the exhaust air so he opted to omit these pricier and more elaborate options. What it does have, though, is an adjustable-height sash, a small form factor that allows it to easily move around his shop, and a waterproof, spill-collecting area in the bottom. The enclosure is built with plywood, allowing for openings for an air inlet, the exhaust ducting, and a cable pass-through, and then finished with a heavy-duty paint. He also included built-in lighting and when complete, looks indistinguishable from something we might buy from a lab equipment supplier.

While [John] does admit that the exhaust fan isn’t anything special and might need to be replaced more often than if he had gone with one that was corrosion-resistant, he’s decided that the cost of this maintenance doesn’t outweigh the cost of a specialized fan. He also notes it’s not fire- or bomb-proof, but nothing he’s doing is prone to thermal anomalies of that sort. For fume hoods of all sorts, we might also recommend adding some automation to them so they are used any time they’re needed.

Continue reading “Custom Fume Hood For Safe Electroless Plating”