Parts We Miss: The Mains Transformer

About two decades ago there was a quiet revolution in electronics which went unnoticed by many, but which overturned a hundred years of accepted practice. You’d have noticed it if you had a mobile phone, the charger for your Nokia dumbphone around the year 2000 would have been a weighty device, while the one for your feature phone five years later would have been about the same size but relatively light as a feather. The electronics industry abandoned the mains transformer from their wall wart power supplies and other places in favour of the much lighter and efficient switch mode power supply. Small mains transformers which had been ubiquitous in electronics projects for many years, slowly followed suit.

Coils Of Wire, Doing Magic With Electrons

Inside and outside views of Jenny Lists's home made linear power supply from about 1990
This was a state of the art project for a future Hackaday scribe back in 1990.

A transformer works through transferring alternating electrical current into magnetic flux by means of a coil of wire, and then converting the flux back to electric current in a second coil. The flux is channeled through a ferromagnetic transformer core made of iron in the case of a mains transformer, and the ratio of input voltage to output voltage is the same as the turns ratio between the two. They provide a safe isolation between their two sides, and in the case of a mains transformer they often have a voltage regulating function as their core material is selected to saturate should the input voltage become too high. The efficiency of a transformer depends on a range of factors including its core material and the frequency of operation, with transformer size decreasing with frequency as efficiency increases.

When energy efficiency rules were introduced over recent decades they would signal the demise of the mains transformer, as the greater efficiency of a switch-mode supply became the easiest way to achieve the energy savings. In a sense the mains transformer never went away, as it morphed into the small ferrite-cored part running at a higher frequency in the switch-mode circuitry, but it’s fair to say that the iron-cored transformers of old are now a rare sight. Does this matter? It’s time to unpack some of the issues surrounding a small power supply. Continue reading “Parts We Miss: The Mains Transformer”

Apple Pushes Back On Right To Repair Bill Due To Parts Pairing

After previously supporting one in California, Apple has made an about-face and is now pushing back against a “Right to Repair” bill (Senate Bill 1596) currently under consideration in Oregon. The reason for this appears to be due to this new bill making parts pairing illegal, as reported by [404media] and [PCMag].

The practice of parts pairing is becoming ever more prevalent with Apple devices, which links specific parts of a system such as cameras, displays, batteries, and fingerprint sensors to the mainboard. During the open hearing on the newly proposed Oregonian bill, Apple’s [John Perry] insisted that this parts pairing is done for user security, safety and privacy.

Even in we take that claim at face value, the fact remains that with parts pairing in place, only authorized Apple repair centers can routinely replace components — while user repairs are limited to specific devices with limited part availability. Even in the latter case the user still has to contact Apple to have them reauthorize the replaced part. This is becoming an issue with Apple’s MacBooks as well, where the lid angle sensor requires calibration using a proprietary tool.

During the same hearing, the director of an Oregon nonprofit organization noted that of the 15,000 iPhones which they had donated to them last year, only 300 could be refurbished due to parts pairing. The remainder of otherwise perfectly fine phones are discarded for recycling, which is terrible for everyone but Apple. Whether the parts pairing element of the bill survives it to the final form remains to be seen, but if it passes it’d set the trend for future bills in other states as well as amendments to existing ones.

Thanks to [paulvdh] for the tip.

AI-Powered Bumper Sticker Provides Context-Sensitive Urban Camouflage

While we absolutely support the right of everyone to express their opinions, it seems to us that it’s rarely wise to turn your vehicle into a mobile billboard for your positions. Aside from potentially messing up the finish on your car, what’s popular and acceptable at home might attract unwanted attention while traveling abroad, leading to confrontations that might make your trip a little more eventful than it needs to be.

So why not let technology help you speak your mind in a locally sensitive manner? That’s the idea behind [Pegor]’s “smahtSticker”, an AI-powered bumper sticker that provides the ultimate in context-sensitive urban camouflage. The business end of smahtSticker — we’re going to go out on a limb here and predict that [Pegor] hails from the Boston area — is an 8.8″ (22-cm) wide HDMI display capable of 1920×480 resolution. That goes on the back of your car and is driven by a Raspberry Pi Zero with a GPS module. The Pi grabs a geolocation every second, and if you’ve moved more than 25 feet (7.6 m) — political divisions are at least that granular in the US right now, trust us — it grabs your current ZIP code using GeoPy. That initiates a query to the OpenAI API to determine the current political attitudes in your location, which is used to select the right slogan to display. You’ll fit in no matter where you wander — wicked smaht!

Now, of course, this is all in good fun, and with tongue planted firmly in cheek. The display isn’t weatherized at all, so that would need to be addressed if one felt like fielding this. Also, ZIP codes may be good for a lot of things, but it’s not the best proxy for political alignment, so you might want to touch that part up.