A person examines a diamond with a loupe.

We’ll Take DIY Diamond Making For $200,000

They say you can buy anything on the Internet if you know the right places to go, and apparently if you’re in the mood to make diamonds, then Alibaba is the spot. You even have your choice of high-pressure, high-temperature (HPHT) machine for $200,000, or a chemical vapor deposition (CVD) version, which costs more than twice as much. Here’s a bit more about how each process works.

A sea of HPHT diamond-making machines.
A sea of HPHT machines. Image via Alibaba

Of course, you’ll need way more than just the machine and a power outlet. Additional resources are a must, and some expertise would go a long way. Even so, you end up with raw diamonds that need to be processed in order to become gems or industrial components.

For HPHT, you’d also need a bunch of good graphite, catalysts such as iron and cobalt, and precise control systems for temperature and pressure, none of which are included as a kit with the machine.

For CVD, you’d need methane and hydrogen gases, and precise control of microwaves or hot filaments. In either case, you’re not getting anywhere without diamond seed crystals.

Right now, the idea of Joe Hacker making diamonds in his garage seems about as far off as home 3D printing did in about 1985. But we got there, didn’t we? Hey, it’s a thought.

Main and thumbnail images via Unsplash

The Universe As We Know It May End Sooner Than Expected

The 'Sombrero Potential' as seen with the Higgs mechanism.
The ‘Sombrero Potential’ as seen with the Higgs mechanism.

One of the exciting aspects of some fields of physics is that they involve calculating the expected time until the Universe ends or experiences fundamental shifts that would render most if not all of the ‘laws of physics’ invalid. Within the Standard Model (SM), the false vacuum state is one such aspect, as it implies that the Universe’s quantum fields that determine macrolevel effects like mass can shift through quantum field decay into a lower, more stable state. One such field is the Higgs field, which according to a team of researchers may decay sooner than we had previously assumed.

As the Higgs field (through the Higgs boson) is responsible for giving particles mass, it’s not hard to imagine the chaos that would ensue if part of the Higgs field were to decay and cause a spherical ripple effect throughout the Universe. Particle masses would change, along with all associated physics, as suddenly the lower Higgs field state means that everything has significantly more mass. To say that it would shake up the Universe would an understatement.

Of course, this expected time-to-decay has only shifted from 10794 years to 10790 years with the corrections to theĀ  previous calculations as provided in the paper by [Pietro Baratella] and colleagues, and they also refer to it as ‘slightly shorter’. A sidenote here is also that the electroweak vacuum’s decay is part of the imperfect SM, which much like the false vacuum hypothesis are part of these models, and not based on clear empirical evidence (yet).

Raspberry Pi Becomes Secure VPN Router

OpenWRT is a powerful piece of open-source software that can turn plenty of computers into highly configurable and capable routers. That amount of versatility comes at a cost, though; OpenWRT can be difficult to configure outside of the most generic use cases. [Paul] generally agrees with this sentiment and his latest project seeks to solve a single use case for routing network traffic, with a Raspberry Pi configured to act as a secure VPN-enabled router configurable with a smartphone.

The project is called PiFi and, while it’s a much more straightforward piece of software to configure, at its core it is still running OpenWRT. The smartphone app allows most users to abstract away most of the things about OpenWRT that can be tricky while power users can still get under the hood if they need to. There’s built-in support for Wireguard-based VPNs as well which will automatically route all traffic through your VPN of choice. And, since no Pi router is complete without some amount of ad blocking, this router can also take care of removing most ads as well in a similar way that the popular Pi-hole does. More details can be found on the project’s GitHub page.

This router has a few other tricks up its sleeve as well. There’s network-attached storage (NAS) built in , with the ability to use the free space on the Pi’s microSD card or a USB flash drive. It also has support for Ethernet and AC1300 wireless adapters which generally have much higher speeds than the built-in WiFi on a Raspberry Pi. It would be a great way to build a guest network, a secure WiFi hotspot when traveling, or possibly even as a home router provided that the home isn’t too big or the limited coverage problem can be solved in some other way. If you’re looking for something that packs a little more punch for your home, take a look at this guide to building a pfSense router from the ground up.

No Z80? No Problem!

Earlier this year Zilog stopped production of the classic 40-pin DIP Z80 microprocessor, a move that brought a tear to the eye of retro computing enthusiasts everywhere. This chip had a huge influence on both desktop and embedded computing that lingers to this day, but it’s fair to say that the market for it has dwindled. If you have a retrocomputer then, what’s to be done? If you’re [Dean Netherton], you create a processor card for the popular RC2014 retrocomputer backplane, carrying the eZ80, a successor chip that’s still in production.

The eZ80 can be thought of as a Z80 system-on-chip, with microcontroller-style peripherals, RAM, and Flash memory on board. It’s much faster than the original and can address a relatively huge 16MB of memory. For this board, he’s put the chip on a processor daughterboard that plugs into a CPU card with a set of latches to drive the slower RC2014 bus. We can’t help drawing analogies with some of the 16-bit upgrades to 8-bit platforms back in the day, which used similar tactics.

So this won’t save the Z80, but it might well give a new dimension to Z80 hacking. Meanwhile, we’re sure there remain enough of the 40-pin chips out there to keep hackers going for many years to come if you prefer the original. Meanwhile, read our coverage of the end-of-life announcement, even roll your own silicon if you want., or learn about the man who started it all, Federico Faggin.

The JawnCon 0x1 Badge Dials Up A Simpler Time

For hackers of a certain age, the warbling of an analog modem remains something of a siren song. Even if you haven’t heard it in decades, the shrill tones and crunchy static are like a time machine that brings back memories of a bygone era. Alien to modern ears, in the 1980s and 90s, it was the harbinger of unlimited possibilities. An audible reminder that you were about to cross the threshold into cyberspace.

If you can still faintly hear those strangely comforting screeches in the back of your mind, the JawnCon 0x1 badge is for you. With a row of authentic vintage red LEDs and an impeccably designed 3D-printed enclosure, the badge is essentially a scaled-down replica of the Hayes SmartModem. But it doesn’t just look the part — powered by the ESP8266 and the open source RetroWiFiModem project, the badge will allow attendees to connect their modern computers to services from the early Internet via era-appropriate AT commands while they’re at the con.

Continue reading “The JawnCon 0x1 Badge Dials Up A Simpler Time”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The (Mc)Cool Typewriter

A hand and wrist with a gesture detection ring and a control box on the wrist.
Image by [ambrush] via Hackaday.IO
Okay, so this isn’t a traditional keyboard, but you can probably figure out why the RuneRing is here. Because it’s awesome! Now, let me give you the finer points.

Hugely inspired by both ErgO and Somatic, RuneRing is a machine learning-equipped wearable mouse-keyboard that has a configurable, onboard ML database that can be set up to detect any gesture.

Inside the ring is a BMI160 6-axis IMU that sends gesture data to the Seeed Studio nRF52840 mounted on the wrist. Everything is powered with an 80mAh Li-Po lifted from a broken pair of earbuds.

Instead of using a classifier neural network, RuneRing converts IMU data to points in 24-dimensional space. Detecting shapes is done with a statistical check. The result is a fast and highly versatile system that can detect a new shape with as few as five samples.

Continue reading “Keebin’ With Kristina: The One With The (Mc)Cool Typewriter”

Real Time Hacking Of A Supermarket Toy

Sometimes those moments arise when a new device comes on the market and hardware hackers immediately take to it. Over a few days, an observer can watch them reverse engineer it and have all sorts of fun making it do things it wasn’t intended to by the original manufacturer. We’re watching this happen in real time from afar this morning, as Dutch hackers are snapping up a promotional kids’ game from a supermarket (mixed Dutch/English, the site rejects Google Translate).

The Albert Heijn soundbox is a small handheld device with a barcode reader and a speaker, and as far as we can see it forms part of an animal identification card game. The cards have a barcode on the back, and sliding them through a reader causes a sample of that animal’s sound to be played. They’re attractively cheap, so of course someone had to take a look inside. So far the parts including the microcontroller have been identified, the ROM has been dumped and the audio reverse-engineered, and the barcode format has been cracked. Still to come are the insertion of custom audio or codes and arbitrary code execution, but knowing these hackers that won’t take long. If you’re Dutch, we suggest you head over to your local Albert Heijn with a few euros, and join in the fun.

European supermarkets can be fruitful places for the hardware hacker, as we’ve shown you before.