The Road To Lucid Dreaming Might Be Paved With VR

Lucid dreaming is the state of becoming aware one is dreaming while still being within the dream. To what end? That awareness may allow one to influence the dream itself, and the possibilities of that are obvious and compelling enough that plenty of clever and curious people have formed some sort of interest in this direction. Now there are some indications that VR might be a useful tool in helping people achieve lucid dreaming.

The research paper (Virtual reality training of lucid dreaming) is far from laying out a conclusive roadmap, but there’s enough there to make the case that VR is at least worth a look as a serious tool in the quest for lucid dreaming.

One method of using VR in this way hinges on the idea that engaging in immersive VR content can create mild dissociative experiences, and this can help guide and encourage users to perform “reality checks”. VR can help such reality checks become second nature (or at least more familiar and natural), which may help one to become aware of a dream state when it occurs.

Another method uses VR as a way to induce a mental state that is more conducive to lucid dreaming. As mentioned, engaging in immersive VR can induce mild dissociative experiences, so VR slowly guides one into a more receptive state before falling asleep. Since sleeping in VR is absolutely a thing, perhaps an enterprising hacker with a healthy curiosity in lucid dreaming might be inspired to experiment with combining them.

We’ve covered plenty of lucid dreaming hacks over the years and there’s even been serious effort at enabling communication from within a dreaming state. If you ask us, that’s something just begging to be combined with VR.

This Laser Knows About Gasses

What’s that smell? If you can’t tell, maybe a new laser system from CU Bolder and NIST can help. The device is simple and sensitive enough to detect gasses at concentrations down to parts per trillion.

The laser at the system’s heart is a frequency comb laser, originally made for optical atomic clocks. The laser has multiple optical frequencies in its output. The gas molecules absorb light of different wavelengths differently, giving each type of molecule a unique fingerprint.

Continue reading “This Laser Knows About Gasses”

Tearing Down A Vintage Word Processor

There was a time when the line between typewriters and word processing software was a bit fuzzy. [Poking Technology] found a Xerox 6040 which can’t decide what it is. It looks like a typewriter but has a monitor and a floppy drive, along with some extra buttons. You can watch him tear it down in the video below.

The old device uses a daisywheel type element, which, back then, was state of the art. A wheel had many spokes with letters and the printer would spin the wheel and then strike the plastic spoke.

Continue reading “Tearing Down A Vintage Word Processor”

Trio Of Mods Makes Delta Printer More Responsive, Easier To Use

Just about any 3D printer can be satisfying to watch as it works, but delta-style printers are especially hypnotic. There’s just something about the way that three linear motions add up to all kinds of complex shapes; it’s mesmerizing. Deltas aren’t without their problems, though, which led [Bruno Schwander] to undertake a trio of interesting mods on his Anycubic Kossel.

First up was an effort to reduce the mass of the business end of the printer, which can help positional accuracy and repeatability. This started with replacing the stock hot-end with a smaller, lighter MQ Mozzie, but that led to cooling problems that [Bruno] addressed with a ridiculously overpowered brushless hairdryer fan. The fan expects a 0 to 5-VDC signal for the BLDC controller, which meant he had to build an adapter to allow Marlin’s 12-volt PWM signal to control the fan.

Once the beast of a fan was tamed, [Bruno] came up with a clever remote mount for it. A 3D-printed shroud allowed him to mount the fan and adapter to the frame of the printer, with a flexible duct connecting it to the hot-end. The duct is made from lightweight nylon fabric with elastic material sewn into it to keep it from taut as the printhead moves around, looking a bit like an elephant’s trunk.

Finally, to solve his pet peeve of setting up and using the stock Z-probe, [Bruno] turned the entire print bed into a strain-gauge sensor. This took some doing, which the blog post details nicely, but it required building a composite spacer ring for the glass print bed to mount twelve strain gauges that are read by the venerable HX711 amplifier and an Arduino, which sends a signal to Marlin when the head touches the bed. The video below shows it and the remote fan in action.

Continue reading “Trio Of Mods Makes Delta Printer More Responsive, Easier To Use”

Run Xbox 360 Games On Your PC With XenonDecomp

Inspired by the N64: Recompiled project, XenonRecomp does something similar, except for the PowerPC-equipped Microsoft Xbox 360 game console. Based around the triple-core IBM CPU codenamed ‘Xenon‘, the Xbox 360 was released in 2005 and generally quite successful over its lifespan despite its Red Ring of Death issues. Although the current Xbox Series X supports running a number of Xbox 360 games, this is done via emulation and only 632 games out of 2,155 are supported.

This is where XenonRecomp not only promises turning the games into native (x86) software, but also allowing for a range of graphical improvements. Best of all, it allows for Xbox 360 games to be preserved instead of linked to an obsolete console. That said, much like with N64Recomp, it’s not a simple matter of running a tool over the PPC binary. You’re expected to have in-depth systems knowledge, with the tools in XenonRecomp assisting with the decompilation (into C++) and the recompilation into x86 binaries, but support for PPC instructions, VMX (vector instructions) and aspects like jump table conversion and (currently missing) MMIO support are likely to present an enterprising developer with hours of fun to implement and debug when issues arise.

Continue reading “Run Xbox 360 Games On Your PC With XenonDecomp”

Open Source Hardware, How Open Do You Want It To Be?

In our wider community we are all familiar with the idea of open source software. Many of us run it as our everyday tools, a lot of us release our work under an open source licence, and we have a pretty good idea of the merits of one such document over another. A piece of open source software has all of its code released under a permissive licence that explicitly allows it to be freely reproduced and modified, and though some people with longer beards take it a little too seriously at times and different flavours of open source work under slightly different rules, by and large we’re all happy with that.

When it comes to open hardware though, is it so clear cut?  I’ve had more than one rant from my friends over the years about pieces of hardware which claim to be open-source but aren’t really, that I think this bears some discussion.

Open Source Hardware As It Should Be Done

To explore this, we’ll need to consider a couple of open source hardware projects, and I’ll start close to home with one of my own. My Single 8 home movie cartridge is a 3D printable film cartridge for a defunct format, and I’ve put everything necessary to create one yourself in a GitHub repository under the CERN OHL. If you download the file and load it into OpenSCAD you can quickly create an STL file for your slicer, or fiddle with the code and make an entirely new object. Open source at its most efficient, and everyone’s happy. I’ve even generated STLs ready to go for each of the supported ISO values. Continue reading “Open Source Hardware, How Open Do You Want It To Be?”

Hackaday Podcast Episode 311: AirTag Hack, GPS Rollover, And A Flat-Pack Toaster

This week, Elliot Williams and Tom Nardi start off the episode by announcing Arduino co-founder David Cuartielles will be taking the stage as the keynote speaker at Hackaday Europe. In his talk, we’ll hear about a vision of the future where consumer electronics can be tossed in the garden and turned into compost instead of sitting in a landfill for the next 1,000 years or so.

You’ll also hear about a particularly clever manipulation of Apple’s AirTag infrastructure, how a classic kid’s toy was turned into a unique display with the help of computer vision, and the workarounds required to keep older Global Positioning System (GPS) hardware up and running. They’ll also cover DIY toasters, extracting your data from a smart ring before the manufacturer can sell it, a LEGO interferometer, and a new feature added to the Bus Pirate 5’s already impressive list of capabilities.

Capping off the episode there’s a discussion about the surprising (or depending on how you think about it, unsurprising) amount of hardware that was on display at FOSDEM this year, and the history of one of man’s most infernal creations, the shopping cart wheel lock.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download in DRM-free MP3 and listen from the comfort of your shopping cart.

Continue reading “Hackaday Podcast Episode 311: AirTag Hack, GPS Rollover, And A Flat-Pack Toaster”