Retrotechtacular: The Noisy Home Computer From 1967

[Rex Malik] didn’t need an alarm clock. That’s because he had one of two “home computer terminals” next to his bed and, as you can see in the video below, it made quite a racket. The terminal looks like an ASR33 with some modifications. In 1967, it was quite a novelty and, of course, it didn’t have any real processing power. It connected to an “invisible brain” ten miles away.

What do you do with a computer in 1967? Well, it looks like you could trade stocks. It also apparently managed his shopping list and calendar. His young son also learned some letters and numbers. We’d love to hear from the young [Mr. Malik] today to find out what kind of computer he’s using now.

Continue reading “Retrotechtacular: The Noisy Home Computer From 1967”

Electronic Wizard in his lab wearing his wizards hat

How To Use The AT24C32 EEPROM For 4KB External Memory For Microcontrollers

Over on YouTube [Electronic Wizard] explains how to use the AT24C32 EEPROM for external memory for microcontrollers.

He begins by explaining that you don’t want to try modifying your microcontroller flash memory for storing settings, you want to use a separate EEPROM for that. Sometimes your microcontroller will have EEPROM memory attached, but you might still find yourself needing to attach more. The AT24C32 EEPROM is a 4KB non-volatile memory chip. It’s available in various 8-pin packages and two voltage levels, either 2.7 to 5.5 volts or 1.8 to 5.5 volts, and it’s programmed using the I2C protocol.

Continue reading “How To Use The AT24C32 EEPROM For 4KB External Memory For Microcontrollers”

The Incrediplotter: Voice Controlled Plotter From Repurposed Printer

There’s something uniquely satisfying about a pen plotter. Though less speedy or precise than a modern printer, watching a pen glide across the page, mimicking human drawing, is mesmerizing. This project, submitted by [Jacob C], showcases the Incrediplotter, a brilliant repurposing of a 3D printer built by him and his brother.

Starting with a broken 3D printer, [Jacob C] and his brother repurposed its parts to create a voice-controlled pen plotter. They 3D-printed custom components to adapt the printer’s framework for plotting. An STM32 Blue Pill running Klipper controls two TMC2208 motor drivers for the x- and y-axes, while a small standalone servo manages the pen’s height.

The unique twist lies in the software: you can speak to the plotter, and it generates a drawing based on your prompt without needing to select an image. The process involves sending the user’s voice prompt to Google Gemini, which generates an image. The software then converts this image into an SVG compatible with the plotter. Finally, the SVG is translated into G-Code and sent to the plotter to start drawing.

Thanks to [Jacob C] for sharing this impressive project. It’s a fantastic example of repurposing a broken machine, and the voice-to-image feature adds a creative twist, enabling anyone to create unique artwork. Be sure to check out our other featured plotter hacks for more inspiration.

Continue reading “The Incrediplotter: Voice Controlled Plotter From Repurposed Printer”

A Love Letter To Internet Relay Chat

Although kids these days tend to hang out on so-called “Social Media”, Internet Relay Chat (IRC) was first, by decades. IRC is a real-time communication technology that allows people to socialize online in both chat rooms and private chat sessions. As a decentralized communication protocol, anyone can set up an IRC server and connect multiple servers into networks, with the source code for these servers readily available ever since its inception by a student, and IRC clients are correspondingly very easy to write. In a recent video [The Serial Port] channel dedicates a video to IRC and why all of this makes it into such a great piece of technology, not to mention a great part of recent history.

Because of the straightforward protocol, IRC will happily work on even a Commodore 64, while also enabling all kinds of special services (‘bots’) to be implemented. Even better, the very personal nature of individual IRC networks and channels on them provides an environment where people can be anonymous and yet know each other, somewhat like hanging out at a local hackerspace or pub, depending on the channel. In these channels, people can share information, help each other with technical questions, or just goof off.

In this time of Discord, WhatsApp, and other Big Corp-regulated proprietary real-time communication services, it’s nice to pop back on IRC and to be reminded, as it’s put in the video, of a time when the Internet was a place to escape to, not escape from. Although IRC isn’t as popular as it was around 2000, it’s still alive and kicking. We think it will be around until the end days.

Continue reading “A Love Letter To Internet Relay Chat”

Ore Formation Processes, Part Two: Hydrothermal Boogaloo

There’s a saying in mine country, the kind that sometimes shows up on bumper stickers: “If it can’t be grown, it has to be mined.” Before mining can ever start, though, there has to be ore in the ground. In the last edition of this series, we learned what counts as ore (anything that can be economically mined) and talked about the ways magma can form ore bodies. The so-called magmatic processes are responsible for only a minority of the mines working today. Much more important, from an economic point of view, are the so-called “hydrothermal” processes.

Come back in a few million years, and Yellowstone will be a great mining province.
Image: “Gyser Yellowstone” by amanderson2, CC BY 2.0

When you hear the word “hydrothermal” you probably think of hot water; in the context of geology, that might conjure images of Yellowstone and regions like it : Old Faithful geysers and steaming hot springs. Those hot springs might have a role to play in certain processes, but most of the time when a geologist talks about a “hydrothermal fluid” it’s a lot hotter than that.

Is there a point on the phase diagram that we stop calling it water? We’re edging into supercritical fluid territory, here. The fluids in question can be hundreds of degrees centigrade, and can carry things like silica (SiO2) and a metal more famous for not dissolving: gold. Perhaps that’s why we prefer to talk about a “fluid” instead of “water”. It certainly would not behave like water on surface; on the surface it would be superheated steam. Pressure is a wonderful thing.

Let’s return to where we left off last time, into a magma chamber deep underground. Magma isn’t just molten rock– it also contains small amounts of dissolved gasses, like CO2 and H2O. If magma cools quickly, the water gets trapped inside the matrix of the new rock, or even inside the crystal structure of certain minerals. If it cools slowly, however? You can get a hydrothermal fluid within the magma chamber.

Continue reading “Ore Formation Processes, Part Two: Hydrothermal Boogaloo”

Making An Ultralight Helicopter

Ultralight aviation provides an excellent pathway for those who want to fly, but don’t want to get licensed. These quite often cheap and cheerful DIY aircraft often hide some excellent engineering underneath. This is no more true than in [ultralight helicopter’s] four-year-long helicopter build saga!

While most ultralight builds are fixed-wing, a rotocraft can meet all the legal definitions of ultralight aviation. This helicopter is an excellent example of what’s possible with a lot of time and patience. The construction is largely aluminium with some stainless steel on the skids. A 64-horsepower Rotax 582UL engine powers the two-bladed main rotor and tail rotor. The drivetrain features a multi-belt engine coupler and three gearboxes to ensure correct power output to the two rotors.

Continue reading “Making An Ultralight Helicopter”

GPS And Its Little Modules

Ever want to find your device on the map? Think we all do sometimes. The technology you’ll generally use for that is called Global Positioning System (GPS) – listening to a flock of satellites flying in the orbit, and comparing their chirps to triangulate your position.

The GPS system, built by the United States, was the first to achieve this kind of feat. Since then, new flocks have appeared in the orbit, like the Galileo system from the European Union, GLONASS from Russia, and BeiDou from China. People refer to the concept of global positioning systems and any generic implementation as Global Navigation Satellite System (GNSS), but I’ll call it GPS for the purposes of this article, and most if not all advice here will apply no matter which one you end up relying on. After all, modern GPS modules overwhelmingly support most if not all of these systems!

We’ve had our writers like [Lewin Day] talk in-depth about GPS on our pages before, and we’ve featured a fair few projects showing and shining light on the technology. I’d like to put my own spin on it, and give you a very hands-on introduction to the main way your projects interface with GPS.

Continue reading “GPS And Its Little Modules”