Basically, It’s BASIC

The BASIC language may be considered old-hat here in 2025, and the days when a computer came as a matter of course with a BASIC interpreter are far behind us, but it can still provide many hours of challenge and fun. Even with our love of all things 8-bit, though, we’re still somewhat blown away by [Matthew Begg]’s BASIC interpreter written in 10 lines of BASIC. It’s an entry in the BASIC 10-liner competition, and it’s written to run on a Sinclair ZX Spectrum.

The listing can be viewed as a PNG file on the linked page. It is enough to cause even the most seasoned retrocomputer enthusiasts a headache because, as you might expect, it pushes the limits of the language and the Sinclair interpreter.  It implements Tiny Basic as a subset of the more full-featured BASICs, and he’s the first to admit it’s not fast by any means. He gives a line-by-line explanation, and yes, it’s about as far away from the simple Frogger clones we remember bashing in on our Sinclairs as it’s possible to get.

We love it that there are still boundaries to be pushed, even on machines over four decades old, and especially that this one exceeds what we thought was a pretty good knowledge of Sinclair BASIC. Does this language still have a place in the world? We always look forward to the BASIC 10-liner competition.

Header: background by Bill Bertram, CC BY-SA 2.5.

A Twin-Lens Reflex Camera That’s Not Quite What It Seems

The Camp Snap is a simple fixed-focus digital camera with only an optical viewfinder and a shot counter, which has become a surprise hit among photography enthusiasts for its similarity to a disposable film camera. [Snappiness] has one, and also having a liking for waist-level viewfinders as found on twin-lens reflex cameras, decided to make a new Camp Snap with a waist-level viewfinder. It’s a digital twin-lens reflex camera, of sorts.

Inside the Camp Snap is the little webcam module we’ve come to expect from these cameras, coupled with the usual microcontroller PCB that does the work of saving to SD card. It’s not an ESP32, but if you’ve ever played with an ESP32-CAM board you’re on a similar track. He creates a 3D-printed TLR-style case designed to take the PCB and mount the camera module centrally, with ribbon cable extensions taking care of placement for the other controls. The viewfinder meanwhile uses a lens, a mirror, and a Fresnel lens, and if you think this might look a little familiar it’s because he’s based it upon his previous clip-on viewfinder project.

The result, with an added “Snappiflex” logo and filter ring, is a rather nice-looking camera, and while it will preserve the dubious quality of the Camp Snap, it will certainly make the process of using the camera a lot more fun. We think these cheap cameras, and particular their even less expensive AliExpress cousins, have plenty of hacking potential as yet untapped, and we’re keen to see more work with them. The full video is below the break.

Continue reading “A Twin-Lens Reflex Camera That’s Not Quite What It Seems”

Moving Power Grids In A Weekend, The Baltic States Make The Switch

A significant event in the world of high-power electrical engineering is under way this weekend, as the three Baltic states, Lithuania, Latvia, and Estonia, disconnect their common power grid from the Russian system, and hook it up to the European one. It’s a move replete with geopolitical significance, but it’s fascinating from our point of view as it gives a rare insight into high voltage grid technology.

There are a few news videos in the air showing contactors breaking the circuit, and even a cable-cutting moment, but in practice this is not as simple a procedure as unplugging an appliance from a wall socket. The huge level of planning that has gone into this move is evident in the countrywide precautions in case of power loss, and the heightened security surrounding the work. As we understand it at the moment the three countries exist as a temporary small grid of their own, also isolating the Russian exclave of Kaliningrad which now forms its own grid. The process of aligning the phase between Baltic and European grids has been under way overnight, and an online monitor shows significant frequency adjustments during that time. At some point on Sunday a new connection will be made to the European grid via Poland, and the process will be completed. We imagine that there will be a very relieved group of electrical engineers who will have completed their own version of a Moon landing when that has happened.

If you happen to live in either region, there’s still some time to watch the process in action, by monitoring the supply frequency for yourself. It’s not the first time that geopolitics have affected the European grid, as the continent lost six minutes a few years ago, and should you Americans think you are safe from such problems, think again.

All You Need To Make A Go-Kart, From Harbor Freight

The many YouTube workshop channels make for compelling viewing. even if their hackiness from a Hackaday viewpoint is sometimes variable. But from time to time up pops something that merits a second look. A case in point is [BUM]’s go-kart made entirely from Harbor Freight parts, a complete but rudimentary vehicle for around 300 dollars. It caught our eye because it shows some potential should anyone wish to try their luck with the same idea as a Power Racer or a Hacky Racer.

The chassis, and much of the running gear comes courtesy of a single purchase, a four-wheeled cart. Some cutting and welding produces a surprisingly useful steering mechanism, and the rear axle comes from a post hole digger. Power comes from the Predator gasoline engine, which seems to be a favourite among these channels.

The result is a basic but serviceable go-kart, though one whose braking system can be described as rudimentary at best. The front wheels are a little weak and require some reinforcement, but we can see in this the basis of greater things. Replacing that engine with a converted alternator or perhaps an electric rickshaw motor from AliExpress and providing it with more trustworthy braking would result in possibly the simplest Hacky Racer, or just a stylish means of gliding round a summer hacker camp.

Continue reading “All You Need To Make A Go-Kart, From Harbor Freight”

RC Cars With First Person Video, All With An ESP32

Those little ESP32-CAM boards which mate the WiFi-enabled microcontroller with a small parallel-interface camera module have been with us for years, and while they are undeniably cool to play with, they sometimes stretch the available performance in trying to process and stream video. [Mattsroufe] has made a very cool project with one of them, not only managing to stream video from a small model car, but also to control the steering and motor by means of servos and a little motor driver.

Sadly it’s not entirely a stand-alone device, as the ESP32 streams video to a web server with some Python code to handle the controls. The server can aggregate several of them on one page though, for perhaps a little real-life quad-screen Mario Kart action if you have enough of the things. We can see that this idea has plenty of potential beyond the mere fun of driving a toy car around though, but to whet your appetite there’s a demo video below.

We’ve seen enough of the ESP32-cam before, but perhaps more as a photographic device.

Continue reading “RC Cars With First Person Video, All With An ESP32”

This Thermometer Rules!

A PCB ruler is a common promotional item, or design exercise. Usually they have some sample outlines and holes as an aid to PCB design, but sometimes they also incorporate some circuitry. [Clovis Fritzen] has given us an ingenious example, in the form of a PCB ruler with a built-in thermometer.

This maybe doesn’t have the fancy seven segment or OLED display you were expecting though, instead it’s an ATtiny85 with a lithium cell, the minimum of components, a thermistor for measurement, and a couple of LEDs that serve as the display. These parts are interesting, because they convey the numbers by flashing. One LED is for the tens and the other the units, so count the flashes and you have it.

We like this display for its simplicity, we can see the same idea could be used in many other places.On a PCB ruler, it certainly stands apart from the usual. It has got plenty of competition though.

A Closer Look At The Tanmatsu

A few weeks ago we brought you news of a new palmtop computer for hackers, powered by the new Espressif ESP32-P4 application processor. The Tanmatsu (Japanese for “Terminal”) is a compact handheld device with a QWERTY keyboard and an 800×480 DSI display, and while it currently exists at the final prototype stage there is a pre-order page upon which you can reserve an early production model for yourself. We’ve been lucky enough to be invited to give one a close-up inspection, so it was time to hot-foot it on the train to a Dutch hackerspace in order to bring you a preview.

A Little History, And First Impressions

The Tanmatsu, held in both hands.
Recesses in the case fit well against the hands.

Before looking at the device, it’s time for a little history. The Tanmatsu has its origin in badge.team, the Netherlands-based group that has produced so many European event badges over the years, and it was destined to eventually become the badge for the upcoming WHY2025 hacker camp. As sometimes happens in any community there has been a significant difference of opinion between the event orga and the badge.team folks that it’s inappropriate to go into here, so now it exists as a standalone project. It’s destined to be open-source in its entirety including hardware and software (and we will hold them to that, never fear), but because of the events surrounding its conception the full repositories will be not be made public until some time late in the summer.

Picking the Tanmatsu up and holding it, it’s a rectangular slab a bit larger and thicker than a CD case with that QWERTY keyboard and display on its front face, an array of ports including an SMA socket for a LoRA antenna on its sides, and an expansion connector on its rear. It has a sandwich construction, with a PCB front face, a 3D printed spacer, the PCB itself, and a 3D printed back cover all held together with a set of screws. The recesses on its bottom edge and the lower halves of the sides locate neatly with fingers and thumbs when it’s held in two hands for two-thumb typing. The keyboard is a silicone moulding as is common on this type of device, and while the keys are quite small it was not difficult to type on it. The display meanwhile feels of much higher quality than the SPI parts previously seen on badges. Continue reading “A Closer Look At The Tanmatsu”