Hackaday Podcast 132: Laser Disco Ball, Moore’s Law In Your Garage, Cheap Cyborg Glasses, And A Mouse That Detects Elephants

Hackaday editors Elliot Williams and Mike Szczys debate the great mysteries of the hacking universe. On tap this week is news that Sam Zeloof has refined his home lab chip fabrication process and it’s incredible! We see a clever seismometer built from plastic pipe, a laser, and a computer mouse. There’s a 3D printed fabric that turns into a hard shell using the same principles as jamming grippers. And we love the idea of high-powered lasers being able to safely direct lighting to where you want it.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 132: Laser Disco Ball, Moore’s Law In Your Garage, Cheap Cyborg Glasses, And A Mouse That Detects Elephants”

Hackaday Podcast 131: Have A Heart, Transputer Pi, Just The Wing, And A Flipped Cable Fries Radio

Hackaday editors Mike Szczys and Elliot Williams recount the past week in hardware hacking. There’s a new Tamagochi hack that runs the original ROM on plain old microcontrollers like the STM32. Did you know you can blast the Bayer filter off a camera sensor using a powerful laser and the sensor will still work? We didn’t. There was a lot of debate this week about a commercial jet design alteration that would remove windows — but it’s for the good cause of making the plane more efficient. We marvel at what it takes to pump blood with an artificial heart, and go down the troubleshooting rabbit hole after the magic smoke was let out of a radio.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 131: Have A Heart, Transputer Pi, Just The Wing, And A Flipped Cable Fries Radio”

A Whole Lot Of Stepper Motors Make The Most Graceful 7-Segment Displays

Over the years we’ve seen many takes on the 7-segment display. Among the most interesting are the mechanical versions of what is most often an LED-based item. This week’s offering is from [John Burd], who published a very odd video showing off the clock he made. But look beyond YouTuber antics and you’ll see the stepper motors he used to turn the segments are dripping with graceful beauty. (Video, embedded below.)

Okay if you want to hear [Charlie Sheen] say “Raspberry P-eye”, this is the video for you. [John] used Cameo to get the (former?) star to talk about what was used to build the clock. Like we said, the video is weird. Let’s embrace that right away and then never talk about it again.

The thing is, the build is such a good idea. [John] went with some stepper motors you can source relatively cheaply from Ali Express and the like. Typically they’re around a buck or two each and have a couple of wings for screw mounting brackets. This builds on the segment displays we’ve seen that use hobby servos by allowing you finer control of how the segments move. Sure, the 90° rotation isn’t all that much to work with, but it will be much smoother and you can get fancy with the kinematics you choose. The only place we see room for improvement is the alignment of the segments when they are turned “off” as you can see the center segment in the video thumbnail below is not quite level. Maybe a linkage mechanism would allow for a hing mechanism that aligns more accurately while hiding the servos themselves behind the mounting plate? It’s in your hands now!

In the demo video you’ll also find some interesting test rigs built to proof out the project. One just endurance tests the mechanism, but the other two envision water-actuated segments. One pumps a hollow, transparent segment with colored liquid. The other tried to use water droplets sprayed in the air to illuminate laser segments. Both are cool and we’d like to see more of the oddball approaches which remind us of the ferrofluid clock.

Continue reading “A Whole Lot Of Stepper Motors Make The Most Graceful 7-Segment Displays”

New Contest: Halloween Hackfest

It’s as if Halloween was made for hardware hackers. The world is begging us to build something cleaver as we decorate our houses and ourselves for the big day. And one thing’s for sure: the Hackaday crowd never disappoints. This year we’re fully embracing that with the Halloween Hackfest, our newest contest beginning today along with the help of our sponsors Digi-Key and Adafruit.

The animated video combined with the 3D-printed prop makes for an excellent effect.

Wait, isn’t it the beginning of August? Why are we talking about Halloween? The procrastinator’s dillema, that’s why! Start working on your build now and it will be epic by the time the day actually rolls around. Decorating for trick-or-treaters is a good place to start. For our money, projected heads are a really cool party trick, like these singing Jack-o-laterns, or these disembodied heads inspired by Disney’s Haunted Mansion. Or maybe you’re more of a flamethrower-hidden-in-pumpkin type of person?

It doesn’t take much tech to bring a good costume to life — a few LED strips make a plain old princess dress light up the night and builds some permanent memories for the lucky little one who’s wearing it. Speaking of memories, we doubt the little one will remember this mechwarrior family costume, which is why you’ve always got to make a video of these things.

Over the year’s we’ve seen claw machines for candy delivery, and even a pumpkin piano. Of course pumpkin carving is an entire category unto itself where five-axis CNC machines are fair game. Look around, get inspired, and build something!

Three top winners will receive $150 shopping sprees in Digi-Key’s parts warehouse. If your build happens to use an Adafruit board, your prize will be doubled. We’ll also be awarding some $50 Tindie gift cards to the most artistic projects.

Get started now by creating a project page on Hackaday.io. In the left sidebar of your project page, use the “Submit Project To” button to enter in the Halloween Hackfest. You have from now until October 11th to spill the beans pumpkin seeds on what you’ve made.

Wristwatch PCB Swaps Must Be In The Air

Are we seeing more wristwatch PCB swapping projects because more people are working on them, or because we saw one and they’re on our mind? The world may never know, but when it comes to design constraints, there’s a pretty fun challenge here both in fitting your electronic wizardry inside the confines of an injection molded case, and in the power budget to make your creation run on a sippy straw of battery power.

Just this morning we came across [Joey Castillo’s] sensor-watch project. He chose the Casio F-91W as the donor wristwatch. It’s got that classic Casio look of a segment LCD display capable of displaying hours, minutes, and seconds, as well as day and date. But the added bonus is that we know these have decent water resistance while still providing three buttons for user input. Sure, it’s less buttons than the pink calculator watch we saw [Dave Darko] working on earlier in the week, but which would you trust in the pool?

Replacement PCB sized to use the same battery contact and CR2016 for power [via @josecastillo]
We see that [Joey] also chose to use the ATSAML22 microcontroller and sheds some light on why: it includes a built-in segment LCD controller! If you’re a peripheral geek like us, you can read about the SLCD controller on page 924 of the datasheet (PDF), it’s a whole datasheet onto itself.

The sensor part of the sensor-watch is a flex PCB breakout that allows you to swap in whatever sensor fits your needs. The first to be reflowed at [Joey’s] bench is a BME280 humidity sensor, which is most obviously useful for the included temperature measurements, but maybe it could also alarm at moisture ingress? [Joey] says you can swap in other parts as long as they’re in the QFN or LGA size range. We think an IMU is in order since there’s a lot of fun interaction there like the watch reacting to being positioned in front of your face, or to take tap-based inputs.

We think beginning with a donor watch is brilliant since pulling off a case, especially one that keeps water out, is 97% of the battle. But when your UI is unique to the watch world, sometimes you need to start from scratch like this wooden word clock wristwatch.

Hands-On: Whiskey Pirates DC29 Hardware Badge Blings With RISC-V

The Whiskey Pirates have once again dropped an excellent electronic badge for DEF CON 29. This is, of course, unofficial, but certainly makes the list of the hottest custom bling seen so far this year.

I’m not able to make it to the con in person, but the Pirates sent over one of these badges anyway for an early look. It’s gorgeous, and peering into the circuit board it would be easy to think that the chip shortage ain’t got nothin’ on this badge. But this was possible only because of some very creative parts sourcing, and a huge dose of inspired design work.

Continue reading “Hands-On: Whiskey Pirates DC29 Hardware Badge Blings With RISC-V”

Hackaday Podcast 130: Upside Down 3D-Printer, Biplane Quadcopter, Gutting A Calculator Watch, And GitHub CoPilot

Hackaday editors Elliot Williams and Mike Szczys get charged up on the best hacks the week had to offer. The 3D printer design gods were good to us, delivering an upside-down FDM printer and a hack that can automatically swap out heated beds for continuous printing. We look at a drone design that builds vertical wings into the frame of a quadcopter — now when it tips on its side it’s a fixed-wing aircraft! We chew the artificially-intelligent fat about GitHub CoPilot’s ability (or inability?) to generate working code, and talk about the firm future awaiting solid state batteries.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 130: Upside Down 3D-Printer, Biplane Quadcopter, Gutting A Calculator Watch, And GitHub CoPilot”