3D Printed Generator Build Highlights The Scientific Method

Sometimes we build to innovate, and sometimes we build just to have the satisfaction of saying we made it ourselves. Yet there is another reason to construct something ourselves: To learn, just as [Fraens] has done with this 3D-printed generator. (Video, embedded below.)

[Fraens] starts off with a jig for winding the individual coils, but then the jig itself snaps into a the stator ring. The stator ring is sandwiched by two rotors which rotate on a brass shaft suspended by needle bearings. With the exception of the hardware, all the structural parts are 3d printed.

What really separates the generator build isn’t how it’s built, but rather how [Fraens] has put it to use as tool for learning and experimentation. By plotting input torque vs electrical output, [Fraens] is able to calculate efficiencies in multiple configurations, and has some interesting conclusions to share toward the end of the video. We appreciate how the documentation and analysis help iterate the design towards higher efficiency and will inform the next build.

With some more work, we can see this going straight into a Vertical Axis Wind Turbine or attached to a Pelton Wheel for an off-grid hydro-power setup. Thanks to [Shabab] for the great Tip!

Continue reading “3D Printed Generator Build Highlights The Scientific Method”

The Operator Input Device in a Minuteman II Missile Silo computer

Nuclear Missile Silo Keyboard Re-Launched In USB

When [jns] and their colleague came across an industrial or possibly military grade keyboard/trackball combo on eBay, their minds did the same backflips that yours or mine might. Enthralled by the specialty key caps, the custom layout, and companion trackball adorned with its own keys rather than buttons [jns] and his workmate they did the only thing that infatuated hackers can do: They each bought one! [jns]’s goal? Make it work via USB.  Everything’s been documented in both software and in a very well done video that you can see below the break.

The OID in its natural habitat, a Minuteman Missile installation
The OID its its natural habitat, a Minuteman III installation (U.S. Air Force photo)

After doing some digging, they found that the keyboard and trackball combination was used in Minuteman III nuclear missile silos beginning in the early 1990’s, when the REACT program replaced aging cold war era computers and communications systems with simpler, more flexible systems.

Since the eBay auction came with only the keyboard and trackball, and not the entire Minuteman III outfit, using the new keyboard in its native habitat and wielding nuclear launch capabilities was right out the door. Instead, [jns] focused on reverse engineering the keyboard and trackball, collectively known as the OID (Operator Input Device) for use via USB.

In the video, [jns] goes into more detail about the discovery of reed switched keys, the RS422 protocol being used, blowing up an Arduino Pro Micro, and even repairing the aging trackball. Success was had, and he’s graciously shared the software and hardware design with the world.

If industrial and military grade control hardware gets your hacker juices flowing, you’ll not want to miss that time we covered a control console from a nuclear power plant for sale. Have you been working on any tantalizing, weird, obscure keyboards or equipment with far too many buttons and blinkenlights for your own good? Be sure to let us know about it via the Tip Line!

Continue reading “Nuclear Missile Silo Keyboard Re-Launched In USB”

Hong Kong Hacker Builds Electric Vehicle From Waste

Recycled Parts Round Out Soap Shaped Electric Car

[Handy Geng] has a knack for fitting his creations with a large percentage of recycled material. And as is exemplified by the video below the break, he also loves to mix the practical with the whimsical.

Using parts salvaged from motor scooters, trash heaps, and likely many other sources, [Handy] has put together a small vehicle that he himself describes as looking like a bar of soap as it slips across the floor. You’ll agree when you see the independent front and rear steering at work, allowing the car’s front and rear to be driven and steered on their own. Crabbing sideways, driving diagonally, and we’re guessing spinning in place are possible.

What’s also clear in the video below is that [Handy] is a talented fabricator. While not taking himself too seriously (keep an eye out for the 360° selfie cam!) he clearly takes pride in the work. [Handy]’s workshop and skill set show that at the core, he’s quite serious about his craft. We appreciate the creative use of scrap materials used in such an inspiring build. The turn signals and “communicator” hand is absolutely marvelous.

If building with recycled materials is your thing, then you’ll love the Trash Printer, too. Thanks to [Fosselius] for the tip!

Continue reading “Recycled Parts Round Out Soap Shaped Electric Car”

DIY Hydroelectric Plant

Impressive Off-Grid Hydroelectric Plant Showcases The Hacker Spirit

We all know the story arc that so many projects take: Build. Fail. Improve. Fail. Repair. Improve. Fail. Rebuild. Success… Tweak! [Kris Harbour] is no stranger to the process, as his impressive YouTube channel testifies.

DIY Hydroelectric Plant
An IOT charge controller makes power management easier.

Among all of [Kris’] off-grid DIY adventures, his 500 W micro hydroelectric turbine has us really pumped up. The impressive feat of engineering features Arduino/IOT based controls, 3D printed components, and large number of custom-machined components, with large amounts of metal fabrication as well.

[Kris] Started the build with a Pelton wheel sourced from everyone’s favorite online auction site paired with an inexpensive MPPT charge controller designed for use with solar panels. Eventually the turbine was replaced with a custom built unit designed to produce more power. An Arduino based turbine valve controller and an IOT enabled charge controller give [Kris] everything he needs to manage the hydroelectric system without having to traipse down to the power house. Self-cleaning 3D printed screens keep intake maintenance to a minimum. Be sure to check out a demonstration of the control system in the video below the break.

As you watch the Hydro electric system playlist, you see the hacker spirit run strong throughout the initial build, the failures, the engineering, the successes, and then finally, the tweaking for more power. Because why stop at working when it can be made better, right? We highly recommend checking it out- but set aside some time. The whole series is oddly addictive, and This Hackaday Writer may have spent inordinate amounts of time watching it instead of writing dailies!

Of course, you don’t need to go full-tilt to get hydroelectric power up and running. Even at a low wattage, its always-on qualities mean that even a re-purposed washing machine can be efficient enough to be quite useful.

Thanks to [Mo] for alerting us to the great series via the Tip Line!

Continue reading “Impressive Off-Grid Hydroelectric Plant Showcases The Hacker Spirit”

Bug Clive goes into detail about electrical safety even at the most basic level of wearing gloves.

The Unofficial Guide To (Avoiding) Electrocution

If you’re reading this sentence, there’s a pretty good chance that you interact with electricity more than just as an end-user. You’re a hacker. You aren’t afraid of a few volts, and your projects may involve both DC and AC voltage. Depending on what you’re working on, you might even be dealing with several thousand volts. And it’s you who Big Clive made the video below the break for.

“Familiarity breeds contempt” as the old saying goes, and the more familiar we are with electronics, the more cavalier we may tend to get. If we allow ourselves to get too lax, we may be found working on live circuits, skimping on safety for the sake of convenience, or jokingly saying “safety third!” far too often as we tear into a hazardous situation without scoping it out first.

Who better to bring us down to earth than Big Clive. In this video, he explains how electricity has the potential to impede the beating of our hearts, the action of our lungs, and even break bones. You’ll find a candid discussion about what electric shock does to a person, how to avoid it, and how to help if someone near you suffers electric shock.

Of course, if safety isn’t your thing, then maybe you’re ready to Shake Hands With Danger.

Continue reading “The Unofficial Guide To (Avoiding) Electrocution”

Urgon solders close up to see the work

Vision Impaired Electronics Engineer Shows The Way To Get Things Done

A funny thing happens as the average electronics hobbyist gets older: Their eyes- well they just don’t work the same as they used to. But what if your life started out with compromised vision? In this epic forum post (Google translated from Polish to English), we meet nearly blind hacker [Urgon]. He goes into great detail about his condition and how it affects not just his daily life, but also his abilities as an electronics engineer. Or conversely, how it doesn’t.

[Urgon]’s origin story is familiar. At eight years old, he disassembled his first television. His self-education continued by using his remaining vision to soak up every bit of literature about electronics that he could get his hands on. A well-intentioned but protective mother kept him away from soldering irons, fearing that the close proximity to his good eye might not bode well for his remaining vision.

If Urgon can solder 0805's, so can you!
If Urgon can solder SOIC’s 0805’s, so can you!

Despite a failed eye, and his other having quite severe glaucoma, [Urgon] has persevered. He uses assistive technologies as you’d expect, but notes that in more recent times some excellent free software has surpassed some of the commercial products he used in the past.

While even the sighted among us often shy away from SMD components, [Urgon] dives right in. SOIC packages and 0805 parts don’t hold him back. Bright LED flashlights, zooming in with his smart phone, and surely a healthy dose of patience make his hackery possible.

That’s not to say that [Urgon] hasn’t had some noteworthy incidents. He’s suffered electric shock from the 400 V capacitors in an ATX PSU, burned his face with his soldering iron, and even managed to step on a DIP package. Barefoot. Yes, the pins were facing up.

But wait- there’s more! In this follow-up post, [Urgon] discusses more assistive/adaptive technologies and how hackers like you and I can focus our efforts on things the vision impaired will find most helpful.

Our hats are off to [Urgon] and those like him who persevere despite the odds. We can all learn from [Urgon]’s hacker spirit and his dedication to the craft. We recently covered some blind software hackers who have taken it upon themselves to fly passenger jets– virtually, of course!

Thanks to [Moryc] for the excellent tip!

 

Pete's Simple Seven SSB Transceiver

PSSST! Here’s A Novel SSB Radio Design With Only Seven Transistors

When [Pete Juliano] sat down to design a sideband transceiver for the 20 Meter (14 MHz) ham radio band, he eschewed the popular circuits that make up so many designs. He forged ahead, building a novel design that he calls Pete’s Simple Seven SSB Transceiver, or PSSST for short.

What makes the PSSST so simple is not only its construction, but the low component count. The same circuit using four 2N2222A’s is used on both transmit and receive. On transmit, an extra three components step in to amplify the microphone input and build output power, which is 2.5-4 Watts, depending on the final output transistor used. The best part is that all of the transistors can be had for under $10 USD! [Pete] shows where radio components such as the RF mixers and the crystal filter can be purchased, saving a new constructor a lot of headaches. The VFO and IF frequencies are both provided by the venerable si5351a with an Arduino at the helm.

Many simple transceivers are designed to demonstrate a minimum viable radio, with performance not really a goal. On the other hand, the PSSST was modeled stage-by-stage in LTSpice, ensuring great transmit audio and nice receiver performance. Be sure to check out the demonstration below the break!

[Pete] has painstakingly documented the entire project on his website, and the code for the VFO is available by request via email. We appreciate this contribution to the homebrew ham radio community, and we’re sure this will provide many nights of solder smoking enjoyment for radio amateurs around the world.

Continue reading “PSSST! Here’s A Novel SSB Radio Design With Only Seven Transistors”