Hackaday Podcast Episode 344: Board With Lasers, Op-Amp Torture, And Farewell Supercon 9

Hackaday Editors Tom Nardi and Al Williams spent the weekend at Supercon and had to catch up on all the great hacks. Listen in as they talk about their favorites. Plus, stick around to the end to hear about some of the highlights from their time in Pasadena.

If you’re still thinking about entering the Component Abuse Contest, you’re just about out of time. Need some inspiration? Tom and Al talk about a few choice entries, and discuss how pushing parts out of their comfort zone can come in handy. Do you make your own PCBs? With vias? If you have a good enough laser, you could. Or maybe you’d rather have a $10 Linux server? Just manage your expectations. The guys both admit they aren’t mechanical geniuses and, unlike [4St4r], aren’t very good at guessing sounds either. They round up with some 3D printing projects and a collection of quick hacks.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download in DRM-free MP3 no PDP-1, 3D Printer, or lasers needed to listen.

Continue reading “Hackaday Podcast Episode 344: Board With Lasers, Op-Amp Torture, And Farewell Supercon 9”

The Deadliest US Nuclear Accident Is Not What You Think

When you think of a US Nuclear accident, you probably think of Three Mile Island. However, there have been over 50 accidents of varying severity in the US, with few direct casualties. (No one died directly from the Three Mile Island incident, although there are some studies that show increased cancer rates in the area.)

Indeed, where there are fatalities, it hasn’t been really related to the reactor. Take the four people who died at the Surry Nuclear Power Plant accident: they were killed when a steam pipe burst and fatally scalded them. At Arkansas Nuclear One, a 525-ton generator was being moved, the crane failed to hold it, and one person died. That sort of thing could happen in any kind of industrial setting.

But one incident that you have probably never heard of took three lives as a direct result of the reactor. True, it was a misuse of the reactor, and it led to design changes to ensure it can’t happen again. And while the incident was nuclear-related, the radiation didn’t kill them, although it probably would have if they had survived their injuries. Continue reading “The Deadliest US Nuclear Accident Is Not What You Think”

This Reactor Is On Fire! Literally…

If I mention nuclear reactor accidents, you’d probably think of Three Mile Island, Fukushima, or maybe Chernobyl (or, now, Chornobyl). But there have been others that, for whatever reason, aren’t as well publicized. Did you know there is an International Nuclear Event Scale? Like the Richter scale, but for nuclear events. A zero on the scale is a little oopsie. A seven is like Chernobyl or Fukushima, the only two such events at that scale so far. Three Mile Island and the event you’ll read about in this post were both level five events. That other level five event? The Windscale fire incident in October of 1957.

If you imagine this might have something to do with the Cold War, you are correct. It all started back in the 1940s. The British decided they needed a nuclear bomb project and started their version of the Manhattan Project called “Tube Alloys.” But in 1943, they decided to merge the project with the American program.

The British, rightfully so, saw themselves as co-creators of the first two atomic bombs. However, in post-World War paranoia, the United States shut down all cooperation on atomic secrets with the 1946 McMahon Act.

We Are Not Amused

The British were not amused and knew that to secure a future seat at the world table, it would need to develop its own nuclear capability, so it resurrected Tube Alloys. If you want a detour about the history of Britan’s bomb program, the BBC has a video for you that you can see below.

Continue reading “This Reactor Is On Fire! Literally…”

Expert Systems: The Dawn Of AI

We’ll be honest. If you had told us a few decades ago we’d teach computers to do what we want, it would work some of the time, and you wouldn’t really be able to explain or predict exactly what it was going to do, we’d have thought you were crazy. Why not just get a person? But the dream of AI goes back to the earliest days of computers or even further, if you count Samuel Butler’s letter from 1863 musing on machines evolving into life, a theme he would revisit in the 1872 book Erewhon.

Of course, early real-life AI was nothing like you wanted. Eliza seemed pretty conversational, but you could quickly confuse the program. Hexapawn learned how to play an extremely simplified version of chess, but you could just as easily teach it to lose.

But the real AI work that looked promising was the field of expert systems. Unlike our current AI friends, expert systems were highly predictable. Of course, like any computer program, they could be wrong, but if they were, you could figure out why.

Experts?

As the name implies, expert systems drew from human experts. In theory, a specialized person known as a “knowledge engineer” would work with a human expert to distill his or her knowledge down to an essential form that the computer could handle.

This could range from the simple to the fiendishly complex, and if you think it was hard to do well, you aren’t wrong. Before getting into details, an example will help you follow how it works.

Continue reading “Expert Systems: The Dawn Of AI”

Remembering Better Mono Graphics

No matter what kind of computer or phone you are reading this on, it probably has a graphics system that would have been a powerful computer on its own back in the 1980s. When the IBM PC came out, you had two choices: the CGA card if you wanted color graphics, or the MDA if you wanted text. Today, you might think: no contest, we want color. But the MDA was cheaper and had significantly higher resolution, which was easier to read. But as free markets do, companies see gaps and they fill them. That’s how we got the Hercules card, which supported high-resolution monochrome text but also provided a graphics mode. [The 8-bit Guy] has a look at these old cards and how they were different from their peers.

Actually, the original MDA card could do eight colors, but no one knew because there weren’t any monitors it could work with, and it was a secret. The CGA resolution was a whopping 640×200, while the MDA was slightly better at 720×350. If you did the Hercules card, you got the same 720×350 MDA resolution, but also a 720×348 graphics mode. Besides that, you could keep your monitor (don’t forget that, in those days, monitors typically required a specific input and were costly).

Continue reading “Remembering Better Mono Graphics”

Magazine Transistor Tester Lives Again

One of the lost pleasures of our modern world is the experience of going shopping at a grocery store, a mall, or a drugstore, and finding this month’s electronics magazine festooned with projects that you might like to build. Sure, you can find anything on the Internet, but there’s something to be said about the element of surprise. Can any of those old projects still be of interest?

[Bettina Neumryr] thinks so. She has a hobby of finding old magazine projects and building them. Her most recent installment is a transistor tester from the June 1983 issue of Everyday Electronics.

The tester was quite a neat job for 1983, with a neat case and a PC board. It measures beta and leakage. There’s an analog meter that can measure the collector current for a fixed base current (beta or hfe). Leakage is how much current flows between emitter and collector with the base turned off.

In 1983, we’d have loved to have a laser printer to do toner transfer for the PC board, but of course, that was unheard of in hobby circles of the day. The tester seemed to work right off the bat, although there was a small adjustment necessary to calibrate the device. All that was left was to put it in a period-appropriate box with some printed labels.

We loved the old electronics and computer magazines. Usually, when we see someone working on an old magazine project, it is probably not quite a literal copy of it. But either way is cool.

Continue reading “Magazine Transistor Tester Lives Again”

VFETs Are (Almost) Solid State Tubes

We always enjoy videos from [w2aew]. His recent entry looks at vertical or VFETs, which are, as he puts it, a JFET that thinks it is a triode. He clearly explains how the transistor works as a conductor unless you bias the gate to form a depletion zone.

The transistors have a short channel, which means they conduct quite well. The low gate resistance and capacitance mean the devices can also switch very quickly. These devices were once in vogue for audio applications. However, they’d fallen out of favor until recently. The reason is that they work quite well in switching power supplies.

How good is the on resistance? So good that his meter reported the probes were shorted instead of measuring the resistance. Pretty good. We’ve seen these VFET transistors used as switches to drive magnetic field coils many years ago and they replaced much more complex circuitry.

The curve tracer in the video is a beautiful instrument of its own. The digital displays give it a high tech yet retro look. A curve tracer, if you haven’t used one, plots stepped voltages against current flowing, and is very useful for examining semiconductor devices. While not as fancy, it is possible to make one to connect to a scope quite easily.

We are pretty sure that it is a Tektronix 576. We watched a repair of a similar unit, the 577, if you’d like to see some (probably) similar insides.

Continue reading “VFETs Are (Almost) Solid State Tubes”