LoRa Messenger In Nokia’s Shell

The arrival of LoRa a few years ago gave us at last an accessible licence-free UHF communication protocol with significant range. It’s closed-source, but there are plenty of modules available so it’s found its way into a variety of projects in our community over the years. Among them we’ve seen a few messaging devices, but none quite so slick as [Trevor Attema]’s converted Nokia E63 BlackBerry-like smartphone. The original motherboard with its cellphone radio and Symbian-running processor have been tossed aside, and in its place is a new motherboard that hooks into the Nokia LCD, keypad, backlighting and speaker. To all intents and purposes from the outside it’s a Nokia phone, but one that has been expertly repurposed as a messenger.

On the PCB alongside a LoRa module is an STM32H7 microcontroller and an ATECC608 secure authentication chip for encrypted messages. It’s designed to form a mesh network, further extending the range across which a group can operate.

We like this project for the quality of the work, but we especially like it for the way it uses the Nokia’s components. We’ve asked in the past why people aren’t hacking smartphones, but maybe we’re asking the wrong question. If the smartphone as a unit isn’t useful, then how about its case, components, and form factor? Perhaps a black-brick Android phone will yield little, but the previous generation such as this Nokia use parts that are easy to interface with and well understood. Let’s hope it encourages more experimentation.

QMESH: LoRa Mesh Networked Voice Communications

LoRa is great for sending short data packets over long ranges but is not normally suitable for voice communications. [Dan Fay] is looking to change this with QMesh, a synchronized, flooded mesh network protocol for ham radio applications.

In a flooded mesh network every node repeats every message it receives. This has the theoretical advantage of making the network self-healing if a single node stops working, but often just means that the nodes will interfere with each other. Thanks to some characteristics of LoRa, [Dan] is using several tricks to get around this packet collision problem. LoRa network can make use of the “capture effect”, which allows a receiver to differentiate between two packets if the power level difference is large enough. This is further improved by adding forward error correction and slightly changing the frequency and timing of the LoRa chirps. QMesh also implements TDMA (Time Division Multiple Access) by splitting transmission into time slots, and only transmitting every third slot. This means it is operating on a 33% duty cycle, which is much higher than the 0.1%-10% allowed on license-free ISM-bands, which legally limits it to the ham bands.

On the hardware side, [Dan] has been using the STM32 NUCLEO-144 development boards with F4/L4/F7/H7 microcontrollers and a custom shield with a 1 W LoRa module and OLED screen. While [Dan] wants to eventually build handheld radios, he plans to first develop small FM repeaters that encode voice as codec2 and use QMesh as a backhaul. QMesh is still under development, but we would love to see the results of some long-range testing, and we are excited to see how it matures.

If your interested in a more basic LoRa-based human-to-human messaging system, take a look at Meshtastic. It’s been going very rapidly over the past year. To learn more about LoRa and other digital modulation schemes, check out the crash course we did with an SDR a while back.

LoRa Messenger Does Its Best BlackBerry Impression

While the de facto smartphone design ultimately went in a different direction, there’s no denying the classic BlackBerry layout offered some compelling advantages. It was a gadget primarily designed to send and receive emails and text messages, and it showed. So is it really any wonder [MSG] would build his pocket-sized LoRa messengers in its image?

Of course, he did have some help. The communicators use the Keyboard FeatherWing by [arturo182], which puts a surplus BlackBerry Q10 keyboard on a custom PCB designed to accept a board from Adafruit’s Feather collection. [MSG] ended up pairing his with a Feather M4 because he wanted to work with CircuitPython, with a 900 MHz LoRa FeatherWing along for the ride. He notes that switching his code over to Arduino-flavored C would allow him to use the Feather M0 that features integrated LoRa; a change that would allow him to make the gadget a bit thinner.

Inside the 3D printed enclosure, He’s made room for a 3.7 V 1800 mAh pouch battery that should provide plenty of runtime. There’s also an external antenna with a uFL pigtail for connecting to the radio. The case is held together with heat-set inserts, which should make it more than robust enough to handle a few adventures.

[MSG] says slight variations in hardware versions means his STLs might need a little tweaking to fit your components, and warns that his code is basically just a mashup of examples he found online, but he’s still sharing the goods for anyone who wants to reach out and touch someone without all that pesky infrastructure in the way.

Continue reading “LoRa Messenger Does Its Best BlackBerry Impression”

IRC Over LoRa, For When Things Really Go South

As a society, we’ve become accustomed to always-on high-speed data connections, whether we’re at home on the computer or out and about with a mobile device. But what happens if a natural disaster knocks out the local infrastructure? Sure some people will be able to fire up their radio if they need to reach out and touch someone, but even among hackers, hams are a minority. What we really need is a backup Internet.

The team behind the CellSol project hopes to show that building a volunteer-operated distributed communications network is not only within the capabilities of the hacker community but probably much easier and cheaper to do than you might think. Each node in the network, known as a Pylon in CellSol parlance, can shuttle data between the LoRa backbone and WiFi-enabled devices like smartphones and computers. Once the network is up and running, users don’t need any special hardware or software to use it.

Now to be clear, nobody is talking about surfing the web here. When a user connects to one of the ESP32 Pylons, they’ll be able to access a simplistic chat system through their browser. If the Pylon has an active Internet connection the chat can be bridged to an IRC channel. Without Internet connectivity, the pylon will simply give users on the CellSol network a means to communicate among each other. To keep things simple there’s no user names, private messages, or encryption. This is bare-bones, end-of-the-world style communication.

Want to join the CellSol revolution? All you really need is an ESP32, a LoRa radio, and the open-source firmware. If you get something like the Heltec LoRa 32 development board, you don’t even need to solder anything together. Just flash the board and go. Once you have a few Pylons going, you can also put together a cheap repeater node using a LoRa equipped Arduino. Both devices are small and energy efficient enough that they could easily be battery or solar powered. As you can see in the video after the break, the team even envisions a future where they could be dropped off in public areas via drone.

This isn’t the first time we’ve seen the ESP32 used to establish an off-grid LoRa communications network, and like those previous attempts, it’s usefulness will largely depend on how many people you can convince to set up their own nodes and repeaters. But if you’ve got some open minded friends who live relatively close by, this could be a great way to have a little chat.

Continue reading “IRC Over LoRa, For When Things Really Go South”

Amazon Sidewalk: Should You Be Co-Opted Into A Private Neighbourhood LoRa Network?

WiFi just isn’t very good at going through buildings. It’s fine for the main living areas of an average home, but once we venture towards the periphery of our domains it starts to become less reliable.  For connected devices outside the core of a home, this presents a problem, and it’s one Amazon hope to solve with their Sidewalk product.

It’s a low-bandwidth networking system that uses capability already built into some Echo and Ring devices, plus a portion of the owner’s broadband connection to the Internet.  The idea is to provide basic connectivity over longer distances to compatible devices even when the WiFi network is not available, but of most interest and concern is that it will also expose itself to devices owned by other people. If your Internet connection goes down, then your Ring devices will still provide a basic version of their functionality via a local low-bandwidth wide-area wireless network provided by the Amazon devices owned by your neighbours. Continue reading “Amazon Sidewalk: Should You Be Co-Opted Into A Private Neighbourhood LoRa Network?”

Join Your Own Private LoRa Mesh Network

We are fortunate to live in an age surrounded by means of easy communication, and like never before we can have friends on the other side of the world as well as just down the road. But as many readers will know, this ease of communication comes at a price of sharing public and commercial infrastructure. To communicate with privacy and entirely off-grid remains an elusive prize, but it’s one pursued by Scott Powell with his LoRa QWERTY Messenger. This is a simple pager device that forms a LoRa mesh network with its peers, and passes encrypted messages to those in the same group.

At its heart is a LoRa ESP32 module with a small OLED display and a Blackberry QWERTY keyboard, and an SD card slot. The device’s identity is contained on an SD card, which gives ease of reconfiguration. It’s doubly useful, because it is also a complement to his already existing Ripple LoRa communication project, that uses a smartphone as the front end for a similar board.

We feel this type of secure distributed communication is an exciting application for LoRa, whether it be for kids playing at being spies or for more serious purposes. It’s certainly not the first such project we’ve featured.

Assemble Your (Virtual) Robotic Underground Exploration Team

It’s amazing how many things have managed to move online in recent weeks, many with a beneficial side effect of eliminating travel making them more accessible to everyone around the world. Though some events had a virtual track before it was cool, among them the DARPA Subterranean Challenge (SubT) robotics competition. Recent additions to their “Hello World” tutorials (with promise of more to come) have continued to lower the barrier of entry for aspiring roboticists.

We all love watching physical robots explore the real world, which is why SubT’s “Systems Track” gets most of the attention. But such participation is necessarily restricted to people who have the resources to build and transport bulky hardware to the competition site, which is just a tiny subset of all the brilliant minds who can contribute. Hence the “Virtual Track” which is accessible to anyone with a computer that meets requirements. (64-bit Ubuntu 18 with NVIDIA GPU) The tutorials help get us up and running on SubT’s virtual testbed which continues to evolve. With every round, the organizers work to bring the virtual and physical worlds closer together. During the recent Urban Circuit, they made high resolution scans of both the competition course as well as participating robots.

There’s a lot of other traffic on various SubT code repositories. Motivated by Bitbucket sunsetting their Mercurial support, SubT is moving from Bitbucket to GitHub and picking up some housecleaning along the way. Together with the newly added tutorials, this is a great time to dive in and see if you want to assemble a team (both of human collaborators and virtual robots) to join in the next round of virtual SubT. But if you prefer to stay an observer of the physical world, enjoy this writeup with many fun details on systems track robots.