Clearly 3D Printing

[Joel] picked up a wireless mouse kit. The idea is you get some 3D printing files and hardware. You can print the shell or make modifications to it. You can even design your own shell from scratch. But [Joel] took a different approach. He created a case with transparent resin. You can see the impressive result in the video below.

While the idea of buying the mouse as a kit simplifies things, we would be more inclined to just gut a mouse and design a new case for it if we were so inclined. We were more impressed with the results with the transparent resin.

Continue reading “Clearly 3D Printing”

A solar-powered decibel meter the size of a business card.

2024 Business Card Challenge: NoiseCard Judges The Sound Around You

Let’s face it: even with the rise of the electric car, the world is a noisy place. And it seems like it has only gotten worse in recent years. But how can we easily quantify the noise around us and know whether it is considered an unhealthy decibel level?

That is where the NoiseCard comes in. This solar-powered solution can go anywhere from the regrettable open office plan to the busy street, thanks to a couple of 330 µF capacitors. It’s based on the low-power STM32G031J6 and uses a MEMS microphone to pick up sound from the back of the card, which the code is optimized for. Meanwhile, the LEDs on the front indicate the ambient noise level, ranging from a quiet 40 dB and under to an ear-splitting 105 dB or greater.

When it comes to building something the size of a business card, every component is under scrutiny for size and usefulness. So even the LEDs are optimized for brightness and low power consumption. Be sure to check it out in action after the break in various environments.

Continue reading “2024 Business Card Challenge: NoiseCard Judges The Sound Around You”

Learning Morse Code With A DIY Trainer

Morse code, often referred to as continuous wave (CW) in radio circles, has been gradually falling out of use for a long time now. At least in the United States, ham radio licensees don’t have to learn it anymore, and the US Coast Guard stopped using it even for emergencies in 1999. It does have few niche use cases, though, as it requires an extremely narrow bandwidth and a low amount of power to get a signal out and a human operator can usually distinguish it even if the signal is very close to the noise floor. So if you want to try and learn it, you might want to try something like this Morse trainer from [mircemk].

While learning CW can be quite tedious, as [mircemk] puts it, it’s actually fairly easy for a computer to understand and translate so not a lot of specialized equipment is needed. This build is based around the Arduino Nano which is more than up for the job. It can accept input from any audio source, allowing it to translate radio transmissions in real time, and can also be connected to a paddle or key to be used as a trainer for learning the code. It’s also able to count the words-per-minute rate of whatever it hears and display it on a small LCD at the front of the unit which also handles displaying the translations of the Morse code.

If you need a trainer that’s more compact for on-the-go CW, though, take a look at this wearable Morse code device based on the M5StickC Plus instead.

Continue reading “Learning Morse Code With A DIY Trainer”

Build Your Own Tape Recorder/Player

If you want to read something from magnetic tape, you need a tape head, right? Or you could do like [Igor Brichkov] and make your own. It looks surprisingly simple. He used a washer with a small slot cut in it and a coil of wire.

The first experiment, in the first video below, is using a commercial tape head connected to a preamp. Music playing “through” the homemade head is readable by the commercial tape reader. This is a prelude to creating an entire tape deck using the head, which you can see in the second video below.

Continue reading “Build Your Own Tape Recorder/Player”

2024 Business Card Challenge: Integrated Game Card

[Dan Schnur] has a simple strategy to ensure their business card stays on the client’s desk and doesn’t just get lobbed in a drawer: make it into a simple gaming platform. This entry into the 2024 Business Card Challenge is based around the tinyjoypad project, integrating an SSD1306 OLED display, joypad, and push button.

Powered by the superstar ATTiny85, the electronics are really not all that much, just a sprinkling of passives to support the display and the six switch inputs from the joystick and push button. Or at least, that’s how much we can glean from the PCB images, as the PCB design files are not provided in the project GitHub.

Leaving the heavy lifting of the software to the tinyjoypad project, the designer can concentrate on the actual job at hand and the reason the business card exists to stay at the forefront of the client’s mind. In the meantime, the card can be a useful distraction for those idle moments. A few such distractions include a tiny version of Missile Command (as shown above), tiny tris, and a very cut-down Q-bert.  Sadly, that last game isn’t quite the same without that distinctive sound.

Hackaday Podcast Episode 276: A Mac On A Pico, Ropes On The Test Stand, A Battleship Up On Blocks

The week gone by was rich with fun hacks, and Elliot and Dan teamed up this time around to run them down for everyone. The focus this week seemed to trend to old hardware, from the recently revived Voyager 1 to a 1940s car radio, a homebrew instrument from 1979, a paper tape reader, and a 128k Mac emulator built from an RP2040.

Newer hacks include a 3D-printed bottle labeler, a very hackable smart ring, and lessons learned about programming robots. We also took a look at turning old cell phones into Linux machines, making sure climbing ropes don’t let you down, and snooping on orbital junk with a cool new satellite.

We wrapped things up with a discussion of just how weird our solar system is, and Dan getting really jealous about Tom Nardi’s recent trip to see the battleship New Jersey from an up close and personal perspective.

 

Worried about attracting the Black Helicopters? Download the DRM-free MP3 and listen offline, just in case.

Continue reading “Hackaday Podcast Episode 276: A Mac On A Pico, Ropes On The Test Stand, A Battleship Up On Blocks”

Nine men of various ages and ethnicities stand in a very clean laboratory space. A number of large white cabinets with displays are on the left behind some white boards and there are wireless charging coils on a dark tablecloth in the foreground. In the back of the lab is a white Porsche Taycan.

Polyphase Wireless EV Fast Charging Moves Forward

While EV charging isn’t that tedious with a cable, for quick trips, being able to just park and have your car automatically charge would be more convenient. Researchers from Oak Ridge National Lab (ORNL) and VW have moved high-speed wireless EV charging one step closer to reality.

We’ve seen fast wireless EV chargers before, but what sets this system apart is the coil size (~0.2 m2 vs 2.0 m2) and the fact it was demonstrated on a functioning EV where previous attempts have been on the bench. According to the researchers, this was the first wireless transfer to a light duty vehicle at 270 kW. Industry standards currently only cover systems up to 20 kW.

The system uses a pair of polyphase electromagnetic coupling coils about 50 cm (19″) wide to transfer the power over a gap of approximately 13 cm (5″). Efficiency is stated at 95%, and that 270 kW would get most EVs capable of those charge rates a 50% bump in charge over ten minutes (assuming you’re in the lower part of your battery capacity where full speeds are available).

We’ve seen some in-road prototypes of wireless charging as well as some other interesting en route chargers like pantographs and slot car roads. We’ve got you covered if you’re wondering what the deal is with all those different plugs that EVs have too.

Continue reading “Polyphase Wireless EV Fast Charging Moves Forward”