The end result of the build, a supersized ultrasonic sensor, held in a person's hands

A Super-Size Functional Tribute To An Ultrasonic Sensor

Sometimes, it’s time to shut down the oscilloscope, and break out the cardboard and paints. If you’re wondering what for, well, here’s a reminder of an Instructable from [CrazyScience], that brings us back to cardboard crafts days. They rebuild one of the most iconic components for an electronics tinkering beginner — an ultrasonic distance sensor, and what’s fun is, it stays fully functional after the rebuild!

This project is as straightforward as it gets, describing all the steps in great detail, and you can complete it with just a hot glue gun and soldering iron. With materials being simple cardboard, aluminum foil, popsicle sticks, some mesh, and a single ultrasonic sensor for harvesting the transmitter and receiver out of, this is the kind of project you could easily complete with your kids on a rainy day.

Now, the venerable ultrasonic sensor joins the gallery of classics given a size change treatment, like the 555 timer we’ve seen two different takes on, or perhaps that one Arduino Uno. Unlike these three, this project’s cardboard skeleton means it’s all that simpler to build your own, what’s with all the shipping boxes we accumulate.

Continue reading “A Super-Size Functional Tribute To An Ultrasonic Sensor”

How To Cram 945 LEDs Into A Teeny Tiny Vegas-Style Sphere

[Carl Bugeja] finds the engineering behind the Las Vegas Sphere fascinating, and made a video all about the experience of designing and building a micro-sized desktop version. [Carl]’s version is about the size of a baseball and crams nearly a thousand RGB pixels across the surface.

A four-layer flexible PCB is the key to routing data and power to so many LEDs.

Putting that many addressable LEDs — even tiny 1 mm x 1 mm ones — across a rounded surface isn’t exactly trivial. [Carl]’s favored approach ended up relying on a flexible four-layer PCB and using clever design and math to lay out an unusual panel shape which covers a small 3D printed geodesic dome.

Much easier said that done, by the way. All kinds of things can and do go wrong, from an un-fixable short in the first version to adhesive and durability issues in later prototypes. In the end, however, it’s a success. Powered over USB-C, his mini “sphere” can display a variety of patterns and reactive emojis.

As elegant and impressive as the engineering is in this dense little display, [Carl] has some mixed feelings about the results. 945 individual pixels on such a small object is a lot, but it also ends up being fairly low-resolution in the end. It isn’t very good at displaying sharp lines or borders, so any familiar shapes (like circles or eyes) come out kind of ragged. It’s also expensive. The tiny LEDs may be only about 5 cents each, but when one needs nearly a thousand of them for one prototype that adds up quickly. The whole bill of materials comes out to roughly $250 USD after adding up the components, PCB, controller, and mechanical parts. It’s certainly a wildly different build than its distant cousin, the RGB cube.

Still, it’s an awfully slick little build. [Carl] doubts there’s much value in pursuing the idea further, but there are plenty of great images and clips from the build. Check out the video, embedded below.

Continue reading “How To Cram 945 LEDs Into A Teeny Tiny Vegas-Style Sphere”

A Look Inside The Geochron Clock

There are plenty of cool clocks out there, and maps by their very essence are cool, too. But a map that’s also a clock — or is it a clock that’s also a map? — has to be the coolest thing ever.

Of course we’re talking about the Geochron, a world clock that makes the relationship between the Earth and the Sun clear and has graced the offices of executives who want to impress visitors with the global nature of their importance for decades. [Attoparsec] has long coveted one of these electromechanical beauties, and when a used one popped up online for a pittance, at least compared to what they cost new, he jumped at the chance.

The Geochron he ended up with was in need of some TLC, but surprisingly little considering its mid-1980s vintage. The real treat in the video below is getting to see how these wonderful devices work. They’re basically simple slide projectors. While we here in the future would simply do everything in software on a nice flat-screen display, the base map, night-day terminators, and calendar are all contained on transparent elements that move under the power of a synchronous motor across a lighted platen. The analemma display is particularly cool; an indicator tracks the Sun’s position over the Earth with a cam that encodes the equation of time in its shape, moving through its familiar bi-lobed loop as the seasons progress.

Any clock that comes with a set of blueprints for installation purposes is alright in our book, and kudos to [Attoparsec] for landing this prize and getting it back in shape. His description of it as “the greatest clock of all time” is apt, but perhaps with a little competition. Or maybe a lot.

Continue reading “A Look Inside The Geochron Clock”

Generating A Lost Password By Traveling Back In Time

It’s probable that some of you reading this will have been approached in the past by people who’ve lost the password to their crypto wallets. They hear that you’re involved in some kind of “hacking”, and they cling to the forlorn hope that you might just be able to recover their lost wealth. For most of us there’s little chance we can help, but in [Joe Grand]’s case he has made it something of a specialism. He’s given an account of how he and a friend recovered a particularly difficult password.

The password in question had been generated by RoboForm, a long random string that was impossible for its owner to remember. The only chance of finding it lay in discovering a flaw in RoboForm, and that seemed hopeless until the discovery of a changelog reference to improving the random number generation of the software.

The video below details some of the detective work required to find the password, first reverse engineering an old version of RoboForm to find the flaw, and then the discovery that the random seed was derived from the system time. A range of passwords could be created for a given time frame, reducing the odds of finding the password considerably. The story is not without its twists, but it ends with the wallet’s owner rather theatrically being presented with a giant fake Bitcoin check.

Continue reading “Generating A Lost Password By Traveling Back In Time”

This Week In Security: Operation Endgame, Appliance Carnage, And Router Genocide

This week saw an impressive pair of takedowns pulled off by law enforcement agencies around the world. The first was the 911 S5 botnet, Which the FBI is calling “likely the world’s largest botnet ever”. Spreading via fake free VPN services, 911 was actually a massive proxy service for crooks. Most lately, this service was operating under the name “Cloud Router”. As of this week, the service is down, the web domain has been seized, and the alleged mastermind, YunHe Wang, is in custody.

The other takedown is interesting in its own right. Operation Endgame seems to be psychological warfare as well as actual arrests and seizures. The website features animated shorts, a big red countdown clock, and a promise that more is coming. The actual target was the ring that manage malware droppers — sort of middlemen between initial shellcode, and doing something useful with a compromised machine. This initial volley includes four arrests, 100+ servers disrupted, and 2,000+ domains seized.

The arrests happened in Armenia and Ukraine. The messaging around this really seems to be aimed at the rest of the gang that’s out of reach of law enforcement for now. Those criminals may still be anonymous, or operating in places like Russia and China. The unmistakable message is that this operation is coming for the rest of them sooner or later. Continue reading “This Week In Security: Operation Endgame, Appliance Carnage, And Router Genocide”

Tell Time And Predict The Heavens With This Astronomical Timepiece

Looking for a new project, or just want to admire some serious mechanical intricacy? Check out [illusionmanager]’s Astronomical Clock which not only tells time, but shows the the positions of the planets in our solar system, the times of sunrise and sunset, the phases of the moon, and more — including solar and lunar eclipses.

One might assume that the inside of the Astronomical Clock is stuffed with a considerable number of custom gears, but this is not so. The clock’s workings rely on a series of tabs on movable rings that interact with each other to allow careful positioning of each element. After all, intricate results don’t necessarily require complex gearing. The astrolabe, for example, did its work with only a few moving parts.

The Astronomical Clock’s mechanical elements are driven by a single stepper motor, and the only gear is the one that interfaces the motor shaft to the rest of the device. An ESP32-C3 microcontroller takes care of everything else, and every day it updates the position of each element as well as displaying the correct time on the large dial on the base.

The video below shows the clock in operation. Curious its inner workings? You can see the entire construction process from beginning to end, too.

Continue reading “Tell Time And Predict The Heavens With This Astronomical Timepiece”

Screenshot of the Kaby Lake CPU pinout next to the Coffee Lake CPU pinout, showing just how few differences there are

Intel’s Anti-Upgrade Tricks Defeated With Kapton Tape

If you own an Intel motherboard with a Z170 or Z270 chipset, you might believe that it only supports CPUs up to Intel’s 7th generation, known as Kaby Lake. Even the CPU socket’s pinout is different in the next generation — we are told, it will fit the same socket, but it won’t boot. So if you want a newer CPU, you’ll have to buy a new motherboard while you’re at it. Or do you?

Turns out, the difference in the socket is just a few pins here and there, and you can make a 8th or 9th generation Coffee Lake CPU work on your Z170/270 board if you apply a few Kapton tape fixes and mod your BIOS, in a process you can find as “Coffee Mod”. You can even preserve compatibility with the 6th/7th generation CPUs after doing this mod, should you ever need to go back to an older chip. Contrasting this to AMD’s high degree of CPU support on even old Ryzen motherboards, it’s as if Intel introduced this incompatibility intentionally.

There’s been a number of posts on various PC forums and YouTube videos, going through the process and showing off the tools used to modify the BIOS. Some mods are exceptionally easy to apply. For example, if you have the Asus Maximus VIII Ranger motherboard, a single jumper wire between two pads next to the EC will enable support without Kapton tape, a mod that likely could be figured out for other similar motherboards as well. There’s a few aspects to keep in mind, like making sure your board’s VRMs are good enough for the new chip, and a little more patching might be needed for hyper-threading, but nothing too involved.

Between money-grab features like this that hamper even the simplest of upgrades and increase e-waste, fun vulnerabilities, and inability to sort out problems like stability power consumption issues, it’s reassuring to see users take back control over their platforms wherever possible, and brings us back to the days of modding Xeon CPUs to fit into 775 sockets.

Don’t get too excited though, as projects like Intel BootGuard are bound to hamper mods like this on newer generations by introducing digital signing for BIOS images, flying under the banner of user security yet again. Alas, it appears way more likely that Intel’s financial security is the culprit.

Continue reading “Intel’s Anti-Upgrade Tricks Defeated With Kapton Tape”