Hackaday Links Column Banner

Hackaday Links: June 2, 2024

So you say you missed the Great Solar Storm of 2024 along with its attendant aurora? We feel you on that; the light pollution here was too much for decent viewing, and it had been too long a day to make a drive into the deep dark of the countryside survivable. But fear not — the sunspot that raised all the ruckus back at the beginning of May has survived the trip across the far side of the sun and will reappear in early June, mostly intact and ready for business. At least sunspot AR3664 seems like it’s still a force to be reckoned with, having cooked off an X-class flare last Tuesday just as it was coming around from the other side of the Sun. Whether 3664 will be able to stir up another G5 geomagnetic storm remains to be seen, but since it fired off an X-12 flare while it was around the backside, you never know. Your best bet to stay informed in these trying times is the indispensable Dr. Tamitha Skov.

Continue reading “Hackaday Links: June 2, 2024”

A stack of PCB business cards that can play Snake on an 8x8 LED matrix.

2024 Business Card Challenge: Snakes On A Business Card

Once [Lambert the Maker] saw the Arduboy, he knew the thing was ripe for remixing into a business card with an 8×8 LED matrix instead of an OLED screen. [Lambert] already has a PCB business card for work, but it looks like it doesn’t do anything. So this Snake-playing card is for their personal information.

The brains of this operation is an STM32F0, which required a bit of finesse when it came to programming the LEDs. According to the datasheet, the max current through a given GPIO pin is 30 mA. The LEDs are running at 20 mA through the limiting resistor, so the code only turns on one LED at a time and makes sure the previous one is off first. The whole screen is updated every 125 ms, and persistence of vision takes care of making the animation look right.

In the short videos after the break, you’ll see a preview followed by brief videos on versions one and two. The prototype was built in 2020, when the board house only offered green PCBs with their assembly service. Fast forward to 2024, when the board house is now offering colors other than green.

Version two is actually thinner than a credit card, and features tiny buttons instead of cap-sense pads for input. [Lambert] also added a floating ADC pin that acts as a random number generator, placing the apple in a new location every time the game is powered on.

Continue reading “2024 Business Card Challenge: Snakes On A Business Card”

Why Your Old Phone Sounded The Way It Did

The mobile phone may be sweeping away the traditional wired phone, but that doesn’t change the fascinating history and technology of the older device. At [This Museum Is Not Obsolete] they have a fully functional mechanical telephone exchange as one of their exhibits, and they’ve published a video examining the various sounds it’s capable of making.

When a voice synthesiser was the stuff of science fiction, exchange status couldn’t be communicated by anything but a set of different tones. If you’ve ever encountered a mechanical exchange you’ll recognise the harsh-sounding low-frequency dial tone, and the various sets of beeps denoting different call status. These were produced with a set of oscillators being switched in and out by shaped cams, and the bank of these on their exchange is most of the subject of this video. The common ones such as the engaged tone and the dial tone are explained, but also some we’d never heard such as the one signifying the exchange as out of capacity.

We may never own a mechanical exchange of our own, but we’re glad that someone does and is sharing it with us. You can see the video below the break.

Continue reading “Why Your Old Phone Sounded The Way It Did”

Use That One Port For High-Speed FPGA Data Export

There’s a good few options for exporting data out of FPGAs, like Ethernet, USB2, or USB3. Many FPGAs have a HDMI (or rather, sparkling DVI) port as well, and [Steve Markgraf] brings us the hsdaoh project — High-Speed Data Acquisition Over HDMI, using USB3 capture cards based on the Macrosilicon MS2130 chipset to get the data from the FPGA right to your PC.

Current FPGA-side implementation is designed for Sipeed Tang chips and the GOWIN toolchain, but it should be portable to an open-source toolchain in the future. Make sure you’re using a USB3 capture card with a MS2130 chipset, load the test code into your FPGA, run the userspace capture side, and you’re ready to add this interface to your FPGA project! It’s well worth it, too – during testing, [Steve] has got data transfer speeds up to 180 MB/s, without the USB3 complexity.

As a test, [Steve] shows us an RX-only SDR project using this interface, with respectable amounts of bandwidth. The presentation goes a fair bit into the low-level details of the protocol, from HDMI fundamentals, to manipulating the MS2130 registers in a way that disables all video conversion; do watch the recording, or at least skim the slides! Oh, and if you don’t own a capture card yet, you really should, as it makes for a wonderful Raspberry Pi hacking companion in times of need.

Internals of the Blu-ray player, showing both the blu-ray drive and the custom PCBs

An Ingenious Blu-Ray Mini-Disk Player

[befi] brings us a project as impressive as it is reminiscent of older times, a Blu-Ray mini disk player. Easily fitting inside a pocket like a 8 cm CD player would, this is a labour of love and, thanks to [befi]’s skills both in electronics and in using a dremel tool.

A BluRay drive was taken apart, for a start, and a lot of case parts were cut off; somehow, [befi] made it fit within an exceptionally tiny footprint, getting new structural parts printed instead, to a new size. The space savings let him put a fully custom F1C100S-powered board with a number of unique features, from a USB-SATA chip to talk to the BluRay drive, to USB pathway control for making sure the player can do USB gadget mode when desired.

There’s an OLED screen on the side, buttons for controlling the playback, power and battery management – this player is built to a high standard, ready for day-to-day use as your companion, in the world where leaving your smartphone as uninvolved in your life as possible is a surprisingly wise decision. As a fun aside, did you know that while 8 cm CDs and DVDs existed, 8 cm BluRay drives never made it to market? If you’re wondering how is it that [befi] has disks to play in this device, yes, he’s used a dremel here too.

Everything is open-sourced – 3D print files, the F1C100S board, and the Buildroot distribution complete with all the custom software used. If you want to build such a player, and we wouldn’t be surprised if you were, there’s more than enough resources for you to go off. And, if you’re thinking of building something else in a similar way, the Buildroot image will be hugely helpful.

Want some entertainment instead? Watch the video embedded below, the build journey is full of things you never knew you wanted to learn. This player is definitely a shining star on the dark path that is Blu-Ray, given that our most popular articles on Blu-Ray are about its problems.

Continue reading “An Ingenious Blu-Ray Mini-Disk Player”

Screenshot of Microsoft Flight Simulator with the Dune expansion, and in the top right corner, the mod's author is shown using their phone with an attached gamepad for controlling a Dune ornithopter.

Take Control Of MS Flight Sim With Your Smartphone

Anyone with more than a passing interest in flight simulators will eventually want to upgrade their experience with a HOTAS (Hands On Throttle-And-Stick) setup that has buttons and switches for controlling your virtual aircraft’s assorted systems, which are well supported by games such as Microsoft Flight Simulator (MSFS). But a traditional HOTAS system can be a bit of an investment, so you might want to thank [Vaibhav Sharma] for the virtualHOTAS project that brings a configurable HOTAS interface to your phone — just in time to try out that Dune expansion for MSFS.

The phone’s orientation sensors are used as a joystick, and on the screen, there’s both sliders and buttons you can use as in-game controls. On the back-end there’s a Python program on the computer which exposes a webserver that the phone connects to, translating sensor and press data without the need for an app. This works wonderfully in MSFS, as [Vaibhav] shows us in the video below. What’s more, if you get tired of the touchscreen-and-accelerometer controls, you can even connect a generic smartphone-designed game controller platform, to have its commands and movements be translated to your PC too!

All the code is open source, and with the way this project operates, it will likely work as a general-purpose interface for other projects of yours. Whether you might want to build an accessibility controller from its codebase, use it for your robot platform, maybe simply repurpose this project for any other game, [Vaibhav]’s creation is yet another reminder that we’re carrying a sensor-packed platform, and it might just help you build a peripheral you didn’t know you needed.

Don’t have a phone handy? Perhaps an Xbox controller could work with just a few 3D printed upgrades, or you could stock up on buttons and build your own joystick from scratch. Oh, and keeping HOTAS principles in mind can be pretty helpful — you might get to redesign the venerable computer mouse, for instance!

Continue reading “Take Control Of MS Flight Sim With Your Smartphone”

Sometimes It’s Not The Solution

Watching a video about a scratch-built ultra-precise switch for metrology last week reminded me that it’s not always the projects that are the most elegant solutions that I enjoy reading about the most. Sometimes I like reading about hackers’ projects more for the description of the problem they’re facing.

A good problem invites you to brainstorm along. In the case of [Marco Reps]’s switches, for instance, they need to be extraordinarily temperature stable, which means being made out of a single type of metal to avoid unintentional thermocouple joints. And ideally, they should be as cheap as possible. Once you see one good solution, you can’t help but think of others – just reading the comments on that article shows you how inspiring a good problem can be. I’m not worried about these issues in any of my work, but it would be cool to have to.

Similarly, this week, I really liked [Michael Prasthofer]’s deep dive into converting a normal camera into a spectrometer. His solutions were all very elegant, but what was most interesting were the various problems he faced along the way. Things that you just wouldn’t expect end up mattering, like diffraction gratings being differently sensitive across the spectrum when light comes in from different angles. You can learn a lot from other people’s problems.

So, hackers everywhere, please share your problems with us! You think that your application is “too niche” to be of general interest? Maybe it’s another example of a problem that’s unique enough to be interesting just on its own. Let’s see what your up against. A cool problem is at least as interesting as a clever solution.