Game Boy Mod Uses Raspberry Pi Compute Module 3

[inches] wanted the power of a Raspberry Pi 3 in a form factor closer to the Pi Zero for a Game Boy mod. This led him to design a custom PCB to interface with one of the less popular items in the Raspberry Pi line: the Compute Module 3. A hardware comparison between the three platforms is available here.

After correcting some minor issues, it booted correctly on the first try. The final result is slightly larger than a Raspberry Pi Zero, but significantly smaller than the Raspberry Pi 3, and fits perfectly inside the Game Boy for a clean build.

The Raspberry Pi Zero remains difficult to source in some parts of the world and can cost nearly as much as the more powerful CM3 (e.g. in Southeast Asia). If you’re comfortable making a breakout board and benefit from the added computing power, it’s a reasonable option when it needs to be small.

Worth noting is that the Raspberry Pi Foundation does sell an open-source development kit for the CM3 that has been used in some projects, but the retail cost is relatively high compared to a Raspberry Pi 3. Smaller but less feature-rich breakout boards like the one by [inches] make the CM3 more accessible.

Thanks to [Lou Hannoe] for the tip.

Hackaday Prize Entry: WiFi Game Boy Cartridge

[DaveDarko] has entered a unique project into this years Hackaday Prize a WiFi Game Boy Cartridge. If you are active over at Hackaday.io I’m sure you’ll have run across Dave at some point or other, maybe we need to start charging him rent.

The aim of this project is to create a WiFi enabled Game Boy cartridge using an ESP32 which would then enable the user to do a number of different things. For example, it could be used as a portable war driving device. You could drive around scanning local WiFi networks all from the comfort of a classic Game Boy bringing back fond memories of your childhood.

This WiFi Game Boy cartridge may even be capable of some extremely light web browsing or be used as a unique controller for all your Internet connected things. Either way this project looks promising, We look forward to seeing how this progresses in the coming months.

Talk Like A Game Boy, Sting Like A Beep

Have you ever listened to a song and wondered how they created the robotic-sounding vocals? There’s a huge variety of ways to do so. [scythe1005] decided to take their inspiration from rock history, creating a Game Boy powered talkbox (Japanese, Google Translate recommended for those that don’t speak the language).

Human speech is generated when vibrations from the vocal chords are shaped into intelligible sounds by the motion of the mouth, tongue, and other body parts known as “articulators”. A talkbox creates robotic speech sounds by using the articulators while replacing the vibrations from the vocal chords with alternative source.

A talkbox is a device most typically used with the electric guitar. The signal from the electric guitar is amplified and played through a speaker or transducer connected to a tube that is placed in the user’s mouth. The user then proceeds to mouth the desired words they wish to say, with the vibrations provided by the guitar’s signal instead of the vocal chords. A popular example of this is Peter Frampton’s use of the talkbox in Do You Feel Like We Do.

[scythe1005] used the same basic bones in their design, using a Game Boy to feed sound into a basic audio amplifier kit and a transducer connected to a tube. This gives a very 1980s synth sound to the vocals. It’s a simple build in concept but one we haven’t seen a whole lot of before. Using off-the-shelf modules, you could build something similar in a weekend. Also featured in the video is an ArduinoBoy — a useful way of controlling a Game Boy over MIDI. It’s used here to interface the keyboard to the handheld console. Video below the break.

As we’ve seen before, the Game Boy is an incredibly popular platform for music — chiptune artists regularly modify the device for better sound.

Continue reading “Talk Like A Game Boy, Sting Like A Beep”

Raspberry Pi-Based Game Boy Emulator

The most popular use for a Raspberry Pi, by far, is video game emulation. We see this in many, many forms from 3D printed Raspberry Pi cases resembling the original Nintendo Entertainment System to 3D printed Raspberry Pi cases resembling Super Nintendos. There’s a lot of variety out there for Raspberry Pi emulation, but [moosepr] is taking it to the next level. He’s building the smallest Pi emulation build we’ve ever seen.

This build is based on the Pi Zero and a 2.2″ (0.56 dm) ili9341 TFT display. This display has a resolution of 240×320 pixels, which is close enough to the resolution of the systems the Pi Zero can emulate. The Pi Zero and display are attached to a beautiful purple breakout board (shared on OSH Park) along with a few 5-way nav switches, a charger for a Lipo battery, and a few other bits and bobs.

Right now, [moosepr] is experimenting with adding sound to his board. It’s easy enough to get sound out of a Pi Zero — it’s just PWM coming from a few pins — but audio also needs an amp, a speaker, and more space on the board. To solve this problem, [moose] found a few piezo transducers from musical greeting cards. These are designed to be thin and as loud as possible, and attaching these directly to the PWM pins providing audio might just work. This is a project to keep an eye on, if only to see if cheap piezos work for low-fi audio in retro emulators.

Neural Nets And Game Boy Cameras

Released in 1998, the Game Boy camera was perhaps the first digital camera many young hackers got their hands on. Around the time Sony Mavica cameras were shoving VGA resolution pictures onto floppy drives, the Game Boy camera was snapping 256×224 resolution pictures and displaying them on a 190×144 resolution display. The picture quality was terrible, but [Roland Meertens] recently had an idea. Why not use neural networks to turn these Game Boy Camera pictures into photorealistic images?

Neural networks, deep learning, machine learning, or whatever other buzzwords we’re using require training data. In this case, the training data would be a picture from a Game Boy Camera and a full-color, high-resolution image of the same scene. This dataset obviously does not exist so [Roland] took a few close up head shots of celebrities and reduced the color to four shades of gray.

[Roland]'s face captured with the Game Boy Camera (left), and turned into a photorealistic image (right)
[Roland]’s face captured with the Game Boy Camera (left), and turned into a photorealistic image (right)
For the deep machine artificial neural learning part of this experiment, [Roland] turned to a few papers on converting photographs to sketches and back again, real-time style transfer. After some work, this neural network turned the test data back into images reasonably similar to the original images. This is what you would expect from a trained neural network, but [Roland] also sent a few pics from the Game Boy Camera through this deep machine artificial learning minsky. These images turned out surprisingly well – a bit washed out, but nearly lomographic in character.

We’ve seen a lot of hacks with the Game Boy Camera over the years. Everything from dumping the raw images with a microcontroller to turning the sensor into a camcorder has been done. Although [Roland]’s technique will only work on faces, it is an excellent example of what neural networks can do.

Tiniest Game Boy Hides In Your Pocket

This is likely the world’s smallest fully-functional Game Boy Color, able to play all of the games using the tiny direction pad and buttons, with onboard display and battery and in the original form factor. This is an incredible hack which presents a tour de force in hardware and software. This will easily rank in the top five hacks you’ve seen this year.

keychain-redactedI’m sure that many of you have fond memories of your first handheld games. This will be Game Boy for most, and we admit they had fairly decent portability and battery life that puts many smart phones to shame. Despite this, Sprite_TM always dreamed of an eminently more portable version and to his adolescent delight he discovered a key chain version of the Game Boy. Unfortunately, he was duped. The keychain looked like a Game Boy but only functioned as a clock.

But now, decades later, technology has progressed as have his own skills. For his talk at the 2016 Hackaday SuperConference, Sprite_TM actually built his childhood dream.

Continue reading “Tiniest Game Boy Hides In Your Pocket”

Pi Zero Transforms To Game Boy

[GreatScott] bought a Game Boy case. Normally, you’d assume you wanted this to repair a damaged Game Boy, but in this case [GreatScott] used a Pi Zero and some 3D printing to build a game system into the tiny box. You can see some videos, below.

Two interesting parts of the project are the source of the LCD display (a rearview camera screen) and the selection of batteries. Lithium ion batteries are all the rage. But if you watch the news, you know there are some safety issues with using the batteries, especially if you use them improperly. [GreatScott] decided to go with nickel metal hydride cells which still need a protection circuit, but are typically less of a danger than the newer technology cells.

Continue reading “Pi Zero Transforms To Game Boy”