Wireless Mouse Power-Up: Logitech MX Master Gets USB-C And Big Battery

When the internal rechargeable battery in his wireless mouse died, [cmot17] decided it was the perfect excuse for making a couple of modifications. The Logitech MX Master isn’t exactly a budget mouse to begin with, but that doesn’t mean there’s no room for improvement. With the addition of a larger battery and USB-C charging port, a very nice mouse just got even better.

As it turns out, there’s plenty of empty space inside the Logitech MX Master, which made it easy to add a larger battery. The original 500 mAh pack was replaced with a new 950 mAh one, which is often sold under the model number 603443. Realistically, if you wanted to go even bigger it looks like any three wire 3.7 V Li-Po pack would probably work in this application, but nearly doubling the capacity is already a pretty serious bump.

Adding the USB-C connector ended up being quite a bit trickier. [cmot17] ordered a breakout board from Adafruit that was just a little too large to fit inside the mouse. In the end, not only did some of the case need to get cut away internally, but the breakout PCB itself got a considerable trimming. Once it was shoehorned in there, a healthy dose of hot glue was used to make sure nothing shifts around.

Since [cmot17] didn’t change the mouse’s original electronics, the newly upgraded Logitech MX Master won’t actually benefit from the faster charging offered by USB-C. If anything, it’s actually going to charge slower thanks to the beefier battery. But considering how infrequently it will need to be charged with the upgraded capacity (Logitech advertised 40 days with the original 500 mAh battery), we don’t think it will be a problem.

Over the years, we’ve seen plenty of stuff crammed into the lowly mouse. Everything from a full computer, to malicious firmware code has been grafted onto that most ubiquitous of computer peripherals. So in the grand scheme of things, this is perhaps one of the most practical mouse modifications to ever grace these pages.

Tiny Two-Digit Thermometer Has Long Battery Life

Like most of his work, this tiny two-digit thermometer shows that [David Johnson-Davies] has a knack for projects that make efficient use of hardware. No pin is left unused between the DS18B20 temperature sensor, the surface mount seven-segment LED displays, and the ATtiny84 driving it all. With the temperature flashing every 24 seconds and the unit spending the rest of the time in a deep sleep, a good CR2032 coin cell should power the device for nearly a year. The board itself measures only about an inch square.

You may think that a display that flashes only once every 24 seconds might be difficult to actually read in practice, and you’d be right. [David] found that it was indeed impractical to watch the display, waiting an unknown amount of time to read some briefly-flashed surprise numbers. To solve this problem, the decimal points flash shortly before the temperature appears. This countdown alerts the viewer to an incoming display, at the cost of a virtually negligible increase to the current consumption.

[David]’s project write-up explains how everything functions. He also steps through the different parts of the source code to explain how everything works, including the low power mode. The GitHub repository holds all the source files, and the board can also be ordered direct from OSH Park via their handy shared projects feature.

Low power consumption adds complexity to projects, but the payoffs can easily be worth the time spent implementing them. We covered a detailed look into low power WiFi microcontrollers that is still relevant, and projects like this weather station demonstrate practical low power design work.

Power Stacker, A Modular Battery Bank

Many of us will own a lithium-ion power pack or two, usually a brick containing a few 18650 cylindrical cells and a 5 V converter for USB charging a cellphone. They’re an extremely useful item to have in your carry-around, for a bit of extra battery life when your day’s Hackaday reading has provided a worthy use for most of your charge. These pack are though by their very nature inflexible, no matter how many cells you own, the pack will only ever contain the number with which it was shipped. Worse, when those cells are discharged or even  reach the end of their lives, they can’t be swapped for fresh ones. [Isaacporras] has a solution for these problems which he calls the Power Stacker, a modular battery pack system.

At its heart is the Maxim MAX8903 lithium-ion charge controller chip, of which one is provided for each cell. A single cell and MAX8903 with a DC to DC converter for 5 V output makes for the simplest configuration, and he has a backplane allowing multiple boards to be connected and sharing the same charge and output buses.

An infinitely configurable battery bank sounds great. It’s looking for crowdfunding backing, and for that it has an explanatory video which you can see below. Meanwhile if you’d  like to try for yourself you can find the necessary files on the hackaday.io page linked above.

Continue reading “Power Stacker, A Modular Battery Bank”

Testing A Battery-Powered Mini Spot Welder

Did you ever see a thin metal tab bonded to a battery terminal with little pock marks? That’s the work of a spot welder. Spot welding is one of those processes that doesn’t offer much in the way of alternatives; either one uses a spot welder to do the job right, or one simply does without. That need is what led [Erwin Ried] to purchase a small, battery-powered spot welder from a maker in Korea and test it out on nickel strips.

The spot welder [Erwin] used is the work of a user by the name of [aulakiria] (link is Korean, machine translation here) and is designed to be portable and powered by batteries commonly used for RC. [Erwin] is delighted with the results, and demonstrates the device in the video embedded below.

Spot welder projects see a lot of DIY, some of which are successful while others are less so. Our own [Sean Boyce] even gave making a solar-powered spot welder a shot, the results of which he described as “nearly practical!”

Continue reading “Testing A Battery-Powered Mini Spot Welder”

A Lemon Battery Via 3D Printing

There are a whole bunch of high school science experiments out there that are useful for teaching students the basics of biology, physics, and chemistry. One of the classics is the lemon battery. [iqless] decided to have a play with the idea, and whipped up a little something for his students.

The basic lemon battery is remarkably simple. Lemon juice provides the electrolyte, while copper and and zinc act as electrodes. This battery won’t have a hope of charging your Tesla, but you might get enough juice to light an LED or small bulb (pun intended).

[iqless] considered jamming electrodes directly into lemons to be rather unsophisticated. Instead, an electrolyte tray was 3D printed. The tray can be filled with lemon juice (either hand-squeezed or straight from a bottle) and the tray has fixtures to hold copper pennies and zinc-plated machine screws to act as the electrodes. The tray allows several cells to be constructed and connected in series or parallel, giving yet further teaching opportunities.

It’s a fun twist on a classroom staple, and we think there are great possibilities here for further experimentation with alternative electrolytes and electrode materials. We’d also love to see a grown-up version with a large cascade of cells in series for lemon-based high voltage experiments, but that might be too much to ask. There’s great scope for using modern maker techniques in classroom science – we’ve discussed variations on the egg drop before. Video after the break.

Continue reading “A Lemon Battery Via 3D Printing”

Epsom Salts Restores Lead Acid Battery

Despite a lot of advances in battery technology, lead acid batteries are still used in many applications due to cost and their ability to provide a lot of surge current. But they don’t last forever. However, [AvE] shows that in some cases a failed battery can be restored with — of all things — epsom salts. If it makes you feel funny to use the stuff grandpa soaks in when he has a backache, you can call it magnesium sulfate.

You can find a complete explanation in the video below (which includes [AvE’s] very colorful language), but fundamentally, the magnesium sulfate dissolves lead sulfate build-up on the battery plates. The fix is usually temporary because this build-up occurs with other failure mechanisms like plate material shedding and collecting at the bottom of the battery. Obviously, epsom salt can’t repair damaged plates or do any other magic cure.

Continue reading “Epsom Salts Restores Lead Acid Battery”

Homebrew Battery Discharger

Rechargable batteries are great – they save money and hassle when using portable devices. It’s pretty common to want to recharge a battery, but less common to intentionally discharge one. Regardless, [Pawel Spychalski] is working on a device to do just that – in a controlled fashion, of course.

[Pawel] himself notes that the device isn’t something the average person would necessarily need, but it does have its applications. There are times when working with various battery chemistries that it is desired to have them held at a certain state of charge. Also, such devices can be used to measure the capacity of batteries by timing how long they take to discharge when placed under a given load.

The build is one that takes advantage of the available parts of the modern hacker’s junkbox. An Arduino is used with an N-channel MOSFET to switch a resistive load. That load consists of load resistors designed for automotive use, to allow cars originally designed for filament bulbs to use LED indicator lights without the flash frequency speeding up. The resistors are 10 ohms and rated at 50 W, so they’re just about right for ganging up to discharge small LiPo batteries in a short period of time.

[Pawel] has tested the basic concept, and has things working. Next on the agenda is to find a way to get rid of the excess heat, as the current design has the resistors reaching temperatures of 158 °F (70 °C) in just a few minutes. Use some of that power to drive a fan?

Perhaps you’re working with lead acid batteries, though – in which chase, you might want to consider blasting away the sulphates?