Cheap Microscope Can Take Amazing Images With Some Simple Upgrades

[Birdbrain] is trying to make their own microfluidic devices. To aid in this quest, they need a quality microscope to see what they’re doing. Instead of buying one outright, they purchased a cheap microscope and upgraded it to do the job instead.

Usability and performance is greatly improved over the stock unit, which was really only fit for learning purposes.

The cheap education-grade microscope cost around $50 USD, had few features, and wasn’t much chop out of the box. The worst part was the sample stage — which was poorly adjustable in the up-and-down axis and could only track about two centimeters up and down. There was no X or Y axis panning either, and it lacked a proper condensor iris, too. Oh, and the included camera module had a resolution of just 240p.

To fix these problems, the microscope was first outfitted with a fully redesigned X-Y-Z stage built out of old components from a salvaged DVD drive and an additional NEMA stepper motor. Camera-wise, it was hooked up with a 2K Raspberry Pi Camera Module 3 running at 10 to 15 frames per second, which broadcasts video over a local network for easy viewing on an external monitor. It also gained an epi-illumination setup for doing reflected light microscopy.

If you’re eager to build a quality microscope with all the controls you personally dream of, this could be a relevant project for you to study. We’ve featured some other builds along these lines before, too. Video after the break.

Continue reading “Cheap Microscope Can Take Amazing Images With Some Simple Upgrades”

Resistor Swap Gives Honda Insights More Power

A common complaint around modern passenger vehicles is that they are over-reliant on electronics, from overly complex infotainment systems to engines that can’t be fixed on one’s own due to the proprietary computer control systems. But even still, when following the circuits to their ends you’ll still ultimately find a physical piece of hardware. A group of Honda Insight owners are taking advantage of this fact to trick the computers in their cars into higher performance with little more than a handful of resistors.

The relatively simple modification to the first-generation Insight involves a shunt resistor, which lets the computer sense the amount of current being drawn from the hybrid battery and delivered to the electric motor. By changing the resistance of this passive component, the computer thinks that the motor is drawing less current and allows more power to be delivered to the drivetrain than originally intended. With the shunt resistor modified, which can be done with either a bypass resistor or a custom circuit board, the only other change is to upgrade the 100 A fuse near the battery for a larger size.

With these two modifications in place, the electric motor gets an additional 40% power boost, which is around five horsepower. But for an electric motor which can output full torque at zero RPM, this is a significant boost especially for a relatively lightweight car that’s often considered under-powered. It’s a relatively easy, inexpensive modification though which means the boost is a good value, although since these older hybrids are getting along in years the next upgrade might be a new traction battery like we’ve seen in the older Priuses.

Thanks to [Aut0l0g1c] for the tip!

The controller after the rebuild, looking just like the stock controller but with an external antenna attached

An Extensive Walkthrough On Building Your Own KSP Controller

Having a game-tailored controller is a level-up in more ways than one, letting you perform in-game actions quickly and intuitively, instead of trying to map your actions to a clunky combination of keyboard and mouse movements. [abzman] took the Pelco KBD300A, a DVR-intended camera controller panel with a joystick, reverse-engineered it, and then rebuilt it into a Kerbal Space Program controller. What’s more, he documented every detail along the way!

The write-up is so extensive, it’s four separate posts — all of them worth reading without a doubt. In the first post, he describes the original hardware, the process of reverse-engineering it, and a few tips for your own RE journeys. Next, he covers about making his own board, showing all the small decisions he’s had to make, with plenty of KiCad screenshots. If you are on the lookout for designing such a board, there’s plenty to learn!

The original hardware didn’t go down without a fight — the third post talks about taming the seven-segment displays, the onboard joystick, and fighting with the key matrix wired in exactly the way you wouldn’t want. In the end, he shows us how you could tie a controller easily into Kerbal Space Program.

One more piece of hardware liberated, one more win for the hacker world. Whether it’s a Macintosh SE, a classic ThinkPad,¬†or even a generic rotary tool, these upgrades are always a joy to see. If you wanted to learn to do such an upgrade yourself, here’s us showing how you can pull this off with a classic Sony Vaio!

Transform An Original Xbox Controller To A 360 Controller

If you’re looking for a controller for your computer or mobile device, you could certainly do worse than one of the latest iterations of the Xbox pad. They might not be perfect, but they’re fairly well-made, not particularly expensive, use standard USB and Bluetooth interfaces, and even have decent support in the open-source community. So if you’re gaming on Linux or working on any other kind of retro gaming rig it’ll likely be plug-and-play.

This wasn’t the case with the first generation Xbox controller, though, and although its proprietary connector was actually using USB, the controller scheme wasn’t as open. This is [Tom]’s effort of upcycling his original Xbox controller to work indistinguishably from a stock Xbox 360 controller.

For those asking why anyone would want to do this, [Tom] is actually one of the few who enjoyed the original bulky Xbox “Duke” controller that released with the console in 2001. It wasn’t a popular choice in the larger gaming community and a year later Microsoft released a smaller version, but we all have our quirks. A Teensy 4.1 is attached to the end of the controller cable and acts as an intermediary to intercept the proprietary signalling coming from this controller and convert it into something usable. Since the controller doesn’t even show up as a standard USB HID device it took a little more sniffing of the protocol to decipher what was going on at all, but eventually some help was found within this other driver that gave [Tom] the clues he needed to get it working.

There were some other headaches to this project as well, especially since USB debugging USB connections while using USB isn’t exactly a streamlined process, but after a couple of breakthroughs the Teensy pass-through interface began working and [Tom] can use his controller of choice across multiple platforms now. If you’re looking to upgrade in other ways take a look at this build which seeks to recalibrate, rather than replace, an older Xbox controller experiencing drift on its analog control sticks.

Continue reading “Transform An Original Xbox Controller To A 360 Controller”

Increasing System Memory With The Flick Of A Switch

There’s an apocryphal quote floating around the internet that “640K ought to be enough memory for anybody” but it does seem unlikely that this was ever actually said by any famous computer moguls of the 1980s. What is true, however, is that in general more computer memory tends to be better than less. In fact, this was the basis for the Macintosh 512k in the 1980s, whose main feature was that it was essentially the same machine as the Macintosh 128k, but with quadruple the memory as its predecessor. If you have yet to upgrade to the 512k, though, it might be best to take a look at this memory upgrade instead.

The Fat Mac Switcher, as it is called by its creator [Kay Koba], can upgrade the memory capability of these retro Apple machines with the simple push of a switch. The switch and controller logic sit on a separate PCB that needs to be installed into the computer’s motherboard in place of some of the existing circuitry. The computer itself needs its 16 memory modules replaced with 41256 DRAM modules for this to work properly though, but once its installed it can switch seamlessly between 512k and 128k modes.

Another interesting quirk of the retro Macintosh scene is that the technically inferior 128k models tend to be valued higher than the more capable 512k versions, despite being nearly identical otherwise. There are also some other interesting discussions on one of the forum posts about this build as well. This module can also be used in reverse; by installing it in a Macintosh 512k the computer can be downgraded to the original Macintosh 128k. For this the memory modules won’t need to be upgraded but a different change to the motherboard is required.

A product like this certainly would have been a welcome addition in the mid 80s when these machines were first introduced, since the 512k was released only months after the 128k machines were, but the retrocomputing enthusiasts should still get some use out of this device and be more able to explore the differences between the two computers. If you never were able to experience one of these “original” Macintosh computers in their heyday, check out this fully-functional one-third scale replica.

Getting The Most From Fading ThinkPads

The ThinkPad line of laptops has been widely prized not only by businesses but also by those who appreciate a high standard of hardware quality and repairability. But some think the cracks are starting to form in their reputation, as it seems that new ThinkPads are sacrificing quality for aesthetics and cost. As a result a huge modding scene has popped up around models that are a few years old like [Cal] found out when working on this X230.

At first he only made some cosmetic improvements to the laptop like replacing the worn palm rest, but quickly found himself in a rabbit hole with other upgrades like swapping out the keyboard and battery. The new keyboard is a 7-row X220 keyboard, which required modification of the connector and flashing the embedded controller with a hacked image to change the keyboard map without needing to make changes at the OS level. From there, he decided to replace the lackluster screen with a 1920×1080 matte IPS panel using an adapter board from Nitrocaster, and finished off his upgrades with a customized Coreboot BIOS for improved performance and security.

While Coreboot doesn’t remove all of the binary blobs that a bootloader like libreboot does, the latter is not compatible with more modern machines like this X230. Still, you’ll get many benefits from using Coreboot instead of the stock bootloader. For running Linux on a daily driver laptop, we appreciate all of these updates and expect that [Cal] will get plenty of years of use out of his machine. We’ve definitely seen an active modding scene for ThinkPads that were (at the time) seven years old and still going strong, so we’d expect nothing less for this one.

Don’t Miss Your Last Chance To Enter The Hack It Back Challenge

While the 2022 Hackaday Prize as a whole winds its way through a good chunk of the year, each individual challenge that makes up the competition only sticks around for a limited time. As hard as it might be to believe, our time with theHack it Back challenge is nearly at a close, with just a few days left to enter your project before the July 24th deadline.

Each challenge in this year’s Hackaday Prize has been designed around the core themes of sustainability, resiliency, and circularity — and for the Hack it Back phase of the competition we asked hackers to essentially keep as much hardware out of the landfill as possible. That could mean making a simple fix that puts a piece of equipment back into service, or it might be a be complete rebuild of an older device to bring it up to modern standards. These are the kind of projects Hackaday was built on, so turning it into an official challenge this year made perfect sense. Continue reading “Don’t Miss Your Last Chance To Enter The Hack It Back Challenge”