Cheap USB Sniffer Has Wireshark Interface

If you’ve done any development on USB hardware, you’ve probably wished you could peek at the bits and bytes as they pass through the data lines. Sometimes, it’s the only way to properly understand what’s going on. [ataradov]’s USB sniffer is built to do just that. 

To sniff high-speed USB communications, the device relies on a Lattice LCMXO2 FPGA and a Cypress CY7C68013A microcontroller, paired with a Microchip USB3343 USB PHY. This setup is capable of operating at data rates of up to 40-50 MB/s, more than enough to debug the vast majority of USB peripherals on the market.

The device is built specifically for use with Wireshark. Most commonly used for network packet sniffing, Wireshark can also be used with a wide variety of other capture hardware for other debugging tasks, as seen here. In addition to live sniffing, it also allows captured data to be saved for later analysis.

If you need this tool, spinning up your own is straightforward. Gerber files are available and the required components can be bought off the shelf. Once assembled, you can program the chips via USB, with no external hardware programmer required.

We’ve seen some other similar hardware before. Meanwhile, if you’re whipping up your own useful debug tools, don’t hesitate to drop us a line!

What Do You Want In A Programming Assistant?

The Propellerheads released a song in 1998 entitled “History Repeating.” If you don’t know it, the lyrics include: “They say the next big thing is here. That the revolution’s near. But to me, it seems quite clear. That it’s all just a little bit of history repeating.” The next big thing today seems to be the AI chatbots. We’ve heard every opinion from the “revolutionize everything” to “destroy everything” camp. But, really, isn’t it a bit of history repeating itself? We get new tech. Some oversell it. Some fear it. Then, in the end, it becomes part of the ordinary landscape and seems unremarkable in the light of the new next big thing. Dynamite, the steam engine, cars, TV, and the Internet were all predicted to “ruin everything” at some point in the past.

History really does repeat itself. After all, when X-rays were discovered, they were claimed to cure pneumonia and other infections, along with other miracle cures. Those didn’t pan out, but we still use them for things they are good at. Calculators were going to ruin math classes. There are plenty of other examples.

This came to mind because a recent post from ACM has the contrary view that chatbots aren’t able to help real programmers. We’ve also seen that — maybe — it can, in limited ways. We suspect it is like getting a new larger monitor. At first, it seems huge. But in a week, it is just the normal monitor, and your old one — which had been perfectly adequate — seems tiny.

But we think there’s a larger point here. Maybe the chatbots will help programmers. Maybe they won’t. But clearly, programmers want some kind of help. We just aren’t sure what kind of help it is. Do we really want CoPilot to write our code for us? Do we want to ask Bard or ChatGPT/Bing what is the best way to balance a B-tree? Asking AI to do static code analysis seems to work pretty well.

So maybe your path to fame and maybe even riches is to figure out — AI-based or not — what people actually want in an automated programming assistant and build that. The home computer idea languished until someone figured out what people wanted to do with them. Video cassette didn’t make it into the home until companies figured out what people wanted most to watch on them.

How much and what kind of help do you want when you program? Or design a circuit or PCB? Or even a 3D model? Maybe AI isn’t going to take your job; it will just make it easier. We doubt, though, that it can much improve on Dame Shirley Bassey’s history lesson.

Souped-Up Reflective Sensor Uses Itself For Wireless Programming

Proximity sensors are common enough in automation projects that we hardly give them a second thought — pick something with specs that match the job and move on. But they can be fussy to get adjusted just right, a job made more difficult if they’re located in some out-of-the-way corner.

But where lies a challenge, there’s also an opportunity, as [Ido Gendel] shows us with this remote-controlled proximity sensor. The story behind this clever little hack starts with an off-the-shelf sensor, the kind with an IR LED and a phototransistor pointed in the same direction that gives a digital output when the light bouncing back into the phototransistor exceeds a certain threshold. It was setting the threshold that gave [Ido]’s client trouble, so [Ido] decided to build a programmable drop-in replacement to make the job easier.

The first try at this used an OBP732 reflective transmitter and an ATtiny202 microcontroller and had three pads on the PCB for programming. This still required physical contact for programming, though, so [Ido] had the idea to use the sensor for wireless IR programming. The microcontroller on version two was switched to an ATtiny212, and a couple of components were added to control the power of the LED so the sensor could do double duty. A programmer using the same sensor and a USB-to-UART adapter completes the system, and allows the sensor threshold to be set just by shining the programmer in its general direction from up to 25 cm away.

We think that getting multiple uses from a single sensor is pretty clever, so hats off for this one. It’s not the first time we’ve featured one of [Ido]’s projects, but it’s been quite a while — this one-clock-cycle-a-day Shabbat clock was the most recent, but you can clearly see the roots of the sensor project in this mouse pointer data encoder that goes all the way back to 2015.

Software Driving Hardware

We were talking about [Christopher Barnatt]’s very insightful analysis of what the future holds for the Raspberry Pi single board computers on the Podcast. On the one hand, they’re becoming such competent computers that they are beginning to compete with lightweight desktop machines, instead of just being a hacker curiosity.

On the other hand, especially given the shortage and the increase in price that has come with the Pi’s expanding memory endowments, a lot of people who would “just throw in a Raspberry Pi” are starting to think more carefully about their options. Five years ago, this would have meant looking into what you could whip together on an Arduino-based platform, either on actual Arduino hardware or on an ESP8266 or similar, but that’s a very different beast from a programmer’s perspective. Working with microcontrollers used to be very different from working with even the smallest Linux machines.

These days, there is no shortage of microcontrollers that have enough memory – both flash and RAM – to support a higher-level environment like MicroPython. And if you think about it, MicroPython brings to the microcontrollers a lot of what people were using a Raspberry Pi for in projects anyway: a friendly interactive programming environment that was free of the compile-here, flash-there debug cycle. If you’re happy coding Python on a single-board Linux computer, you’ll be more or less happy coding in MicroPython or Circuit Python on a microcontroller.

And what this leaves us with, as hackers, is a fantastic spectrum of choices. Where before there was a hard edge between programming C on an 8-bit PIC or an AVR and working with something that had a full Linux operating system like a Pi, it’s all blurry now. And as the Pis, the Jetson, and all the other Linux SBCs are blurring the boundary with more traditional computers as they all become more competent and gain more computer-like peripherals. Nowadays your choice is much freer, and the hardware landscape more fluid. You don’t have to let software development concerns drive your hardware choices, and we think that’s a great thing.

3D Design With Text-Based AI

Generative AI is the new thing right now, proving to be a useful tool both for professional programmers, writers of high school essays and all kinds of other applications in between. It’s also been shown to be effective in generating images, as the DALL-E program has demonstrated with its impressive image-creating abilities. It should surprise no one as this type of AI continues to make in-roads into other areas, this time with a program from OpenAI called Shap-E which can render 3D images.

Like most of OpenAI’s offerings, this takes plain language as its input and can generate relatively simple 3D models with this text. The examples given by OpenAI include some bizarre models using text prompts such as a chair shaped like an avocado or an airplane that looks like a banana. It can generate textured meshes and neural radiance fields, both of which have various advantages when it comes to available computing power, training methods, and other considerations. The 3D models that it is able to generate have a Super Nintendo-style feel to them but we can only expect this technology to grow exponentially like other AI has been doing lately.

For those wondering about the name, it’s apparently a play on the 2D rendering program DALL-E which is itself a combination of the names of the famous robot WALL-E and the famous artist Salvador Dali. The Shap-E program is available for anyone to use from this GitHub page. Even though this code comes from OpenAI themselves, plenty are speculating that the AI revolution to come will largely come from open-source sources rather than OpenAI or Google, something for which the future is somewhat hazy.

This Week In Security: TPM And BootGuard, Drones, And Coverups

Full disk encryption is the go-to solution for hardening a laptop against the worst-case scenario of physical access. One way that encryption can be managed is through a Trusted Platform Module (TPM), a chip on the motherboard that manages the disk encryption key, and only hands it over for boot after the user has authenticated. We’ve seen some clever tricks deployed against these discrete TPMs, like sniffing the data going over the physical traces. So in theory, an integrated TPM might be more secure. Such a technique does exist, going by the name fTPM, or firmware TPM. It uses a Trusted Execution Environment, a TEE, to store and run the TPM code. And there’s another clever attack against that concept (PDF).

It’s chip glitching via a voltage fault. This particular attack works against AMD processors, and the voltage fault is triggered by injecting commands into the Serial Voltage Identification Interface 2.0 (SVI2). Dropping the voltage momentarily to the AMD Secure Processor (AMD-SP) can cause a key verification step to succeed even against an untrusted key, bypassing the need for an AMD Root Key (ARK) signed board firmware. That’s not a simple process, and pulling it off takes about $200 of gear, and about 3 hours. This exposes the CPU-unique seed, the board NVRAM, and all the protected TPM objects.

So how bad is this in the real world? If your disk encryption only relies on an fTPM, it’s pretty bad. The attack exposes that key and breaks encryption. For something like BitLocker that can also use a PIN, it’s a bit better, though to really offer more resistance, that needs to be a really long PIN: a 10 digit PIN falls to a GPU in just 4 minutes, in this scenario where it can be attacked offline. There is an obscure way to enable an “enhanced PIN”, a password, which makes that offline attack impractical with a secure password.

And if hardware glitching a computer seems to complicated, why not just use the leaked MSI keys? Now to be fair, this only seems to allow a bypass of Intel’s BootGuard, but it’s still a blow. MSI suffered a ransomware-style breach in March, but rather than encrypt data, the attackers simply threatened to release the copied data to the world. MSI apparently refused to pay up, and source code and signing keys are now floating in the dark corners of the Internet. There have been suggestions that this leak impacts the entire line of Intel processors, but it seems likely that MSI only had their own signing keys to lose. But that’s plenty bad, given the lack of a revocation system or automatic update procedure for MSI firmware. Continue reading “This Week In Security: TPM And BootGuard, Drones, And Coverups”

WordStar Reborn

Wordstar was the word processor that helped sell the personal computer. At one time, it was ubiquitous, and many authors had a hard time giving it up. Some, like George R. R. Martin, apparently are still refusing to give it up. But most of us have moved on. Thanks to an open-source clone, WordTsar, you may not have to. This is a modern interpretation of our old friend.

Programmers that write were especially fond of WordStar since it had a non-document mode and was often the best text editor you had available for writing code. Being able to do your documentation without switching brain gears is useful, too. Touch typists love the efficiency of easy control of things without resorting to cursor keys or a mouse — the same thing vi and emacs fans enjoy but in a different way.

The software runs on multiple platforms and has some new features. Installation on Linux is easy because it is packaged in an AppImage file. Of course, you can also fire up your best CP/M machine, replica, or emulation and run the real WordStar, but — honestly — WordTsar seems more practical if you wanted to go back to using this kind of wordprocessor or editor for everyday use.

Of course, some word processors were actual hardware. If you want some cheap CP/M hardware, that’s easy enough, too.