Flagging Down Aliens With World’s Biggest Laser Pointer

As you’re no doubt aware, humans are a rather noisy species. Not just audibly, like in the case of somebody talking loudly when you’re in a movie theater, but also electromagnetically. All of our wireless transmissions since Marconi made his first spark gap broadcast in 1895 have radiated out into space, and anyone who’s got a sensitive enough ear pointed into our little corner of the Milky Way should have no trouble hearing us. Even if these extraterrestrial eavesdroppers wouldn’t be able to understand the content of our transmissions, the sheer volume of them would be enough to indicate that whatever is making all that noise on the third rock orbiting Sol can’t be a natural phenomena. In other words, one of the best ways to find intelligent life in the galaxy may just be to sit around and wait for them to hear us.

Of course, there’s some pesky physics involved that makes it a bit more complicated. Signals radiate from the Earth at the speed of light, which is like a brisk walk in interstellar terms. Depending on where these hypothetical listeners are located, the delay between when we broadcast something and when they receive it can be immense. For example, any intelligent beings that might be listening in on us from the closest known star, Proxima Centauri, are only just now being utterly disappointed by the finale for “How I Met Your Mother“. Comparatively, “Dallas” fans from Zeta Reticuli are still on the edge of their seats waiting to find out who shot J.R.

But rather than relying on our normal broadcasts to do the talking for us, a recent paper in The Astrophysical Journal makes the case that we should go one better. Written by James R. Clark and Kerri Cahoy,  “Optical Detection of Lasers with Near-term Technology at Interstellar Distances” makes the case that we could use current or near-term laser technology to broadcast a highly directional beacon to potentially life-harboring star systems. What’s more, it even theorizes it would be possible to establish direct communications with an alien intelligence simply by modulating the beam.

Continue reading “Flagging Down Aliens With World’s Biggest Laser Pointer”

Writing On LEDs With A Laser Pointer

After [Ch00f] got his hands on an 8×8 LED display, he didn’t make a 64-pixel video game or VU meter. He made a laser doodler, allowing him to draw on this display with only a laser pointer.

Using LEDs as light sensors is nothing new; [Forrest Mims III] discovered that LEDs can also detect light way back in the late 60s. [Ch00f] played around with this concept before creating a circuit that uses an LED as both a light emitter and sensor that reacts to the ambient brightness.

[Ch00f]’s laser doodler takes this phenomena and applies it to an Adafruit bicolor LED matrix. When a light shines on an individual pixel in the display, the ATMega48 senses the current and turns that pixel on. Since this these pixels have two colors, [Ch00f] used a latch circuit and a button to cycle between what color the ‘Mega writes to the display.

In the video after the break, [Ch00f] shows off his display by having the LEDs light up in response to a laser pointer. It may be a bit small, but we can see a lot of potential for something like this as a gigantic art installation.

Continue reading “Writing On LEDs With A Laser Pointer”

IPod Laser Pointer


If you thought there wasn’t anything else to shove on the end of your iPod, [Alex] is here to set you straight. He used the DC power that’s available on the iPod’s dock to drive a cheap laser pointer. It’s pretty easy to do – just get a dock connector (sparkfun has em) and add a laser pointer module. If you’d rather access everything else, check out the super dock I put together a while back. Hit the read link if you’d rather see the picture in color.

Laser Cutters: Where’s The Point?

It is funny how when you first start doing something, you have so many misconceptions that you have to discard. When you look back on it, it always seems like you should have known better. That was the case when I first got a low-end laser cutter. When you want to cut or engrave something, it has to be in just the right spot. It is like hanging a picture. You can get really close, but if it is off just a little bit, people will notice.

The big commercial units I’ve been around all had cameras that were in a fixed position and were calibrated. So the software didn’t show you a representation of the bed. It showed you the bed. The real bed plus whatever was on it. Getting things lined up was simply a matter of dragging everything around until it looked right on the screen.

Today, some cheap laser cutters have cameras, and you can probably add one to those that don’t. But you still don’t need it. My Ourtur Laser Master 3 has nothing fancy, and while I didn’t always tackle it the best way, my current method works well enough. In addition, I recently got a chance to try an XTool S1. It isn’t that cheap, but it doesn’t have a camera. Interestingly, though, there are two different ways of laying things out that also work. However, you can still do it the old-fashioned way, too. Continue reading “Laser Cutters: Where’s The Point?”

Getting A Laser Eye Injury And How To Avoid It

Most people love lasers, because they can make cats chase, read music from a shiny disc, etch and cut materials, and be very shiny in Hollywood blockbusters, even when their presence makes zero sense. That said, lasers are also extremely dangerous, as their highly focused nature and wide range of power levels can leave a person dazzled, blinded or dead from direct and indirect exposure. A lapse in laser safety was how [Phil Broughton] ended up with part of his retina forever marked, as he describes his adventures with an overly enthusiastic laser company sales person.

Quanta Ray PRO350 with frequency doubling, emitting a 532nm beam – Sales brochure image from Quanta Ray, unknown date
Quanta Ray PRO350 with frequency doubling, emitting a 532 nm beam – Sales brochure image from Quanta Ray, unknown date

It didn’t take much, just this sales person who made a really poor decision while trying to please some customers and nearly ended with multiple adults, a local school, pilots at a nearby airfield getting their retinas blasted out due to an absolutely harebrained idea to use a fairly high-powered Quanta-Ray Nd:YAG laser on reflective surfaces in the open.

This was in 1999, and fortunately [Phil] only suffered some fairly minor damage to his retina from the laser beam reflection. What happened to the customers (who wore argon laser safety glasses) or the sales critter (who left soon after) is not described, but both may have received some bad news when they had their eyes checked shortly after at the ophthalmologist.

These kind of stories are a stark reminder that laser safety is not optional. Lasers producing a visible (400 – 700 nm) wavelength above Class 2 should only be operated in a fully secured environment, with safety glasses for the appropriate laser wavelength. Class 2 lasers producing a non-visible wavelength can cause permanent damage because the blink reflex of the eye does not offer any protection here.

As even some dodgy laser pointers are being (illegally) sold online are actually Class 2, this should make it clear that laser eye injury can happen to anyone, and it only takes a second to change someone’s life forever.

GlowBlaster Uses 405 Nm Laser To Make Its Mark

Ever wish you could do a little target shooting in a galaxy far, far away? Well then you’re in luck, as the Star Wars inspired GlowBlaster designed by [Louis Abbott] can help you realize those dreams with a real-life laser pistol — albeit a much weaker one than you’d want to carry into a Mos Eisley cantina.

Inside the 3D printed frame of the GlowBlaster is a 5 mW 405 nm module, an Arduino Nano, a speaker, a vibration motor, and a 9 V battery. When you pull the trigger, it pushes down on a 12 mm tactile button which causes the Arduino to fire the laser and sprinkle in a bit of theatrics by way of the speaker and vibration motor. There’s also a second button on the side of the blaster that lets you pick between firing modes.

Continue reading “GlowBlaster Uses 405 Nm Laser To Make Its Mark”

Properly Pipe Laser Light Around With Homebrew Fiber Couplings

It’s a rare person who can pick up a cheap laser pointer and not wield it like a lightsaber or a phaser, complete with sound effects. There’s just something about the “pew-pew” factor that makes projecting a laser beam fun, even if it’s not the safest thing to do, or the most efficient way to the light from one place to another.

We suspect that [Les Wright] has pew-pewed his way through more than a few laser projects in his lab, including his latest experiments with fiber coupling of lasers. The video below is chock full of tips on connecting cheap communications-grade fiber assemblies, which despite their standardized terminations aren’t always easy to use with his collection of lasers. Part of the challenge is that the optical fiber inside the cladding is often very small — as few as 9 microns. That’s a small target to hit without some alignment help, which [Les] uses a range of hacks to accomplish.

The meat of the video demonstrates how to use a cheap fiber fault locator and a simple optical bench setup to precisely align any laser with an optical fiber. A pair of adjustable mirrors allow him to overlap the beams of the fault locator and the target laser precisely. The effects can be interesting; we had no idea comms-grade fiber could leak as much light through the cladding as this, and the bend-radius limits are pretty dramatically illustrated. [Les] teases some practical sensing applications for this in a follow-up video, which we’re looking forward to.

Looking for more laser fun with your remaining eye? Check out [Marco Reps] teardown of a 200-kW fiber laser.

Continue reading “Properly Pipe Laser Light Around With Homebrew Fiber Couplings”